Almost associative operations generating a minimal clone

Tamás Waldhauser

Discussiones Mathematicae - General Algebra and Applications (2006)

  • Volume: 26, Issue: 1, page 45-73
  • ISSN: 1509-9415

Abstract

top
Characterizations of 'almost associative' binary operations generating a minimal clone are given for two interpretations of the term 'almost associative'. One of them uses the associative spectrum, the other one uses the index of nonassociativity to measure how far an operation is from being associative.

How to cite

top

Tamás Waldhauser. "Almost associative operations generating a minimal clone." Discussiones Mathematicae - General Algebra and Applications 26.1 (2006): 45-73. <http://eudml.org/doc/276878>.

@article{TamásWaldhauser2006,
abstract = {Characterizations of 'almost associative' binary operations generating a minimal clone are given for two interpretations of the term 'almost associative'. One of them uses the associative spectrum, the other one uses the index of nonassociativity to measure how far an operation is from being associative.},
author = {Tamás Waldhauser},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {clone; minimal clone; groupoid; associativity; almost associative operation},
language = {eng},
number = {1},
pages = {45-73},
title = {Almost associative operations generating a minimal clone},
url = {http://eudml.org/doc/276878},
volume = {26},
year = {2006},
}

TY - JOUR
AU - Tamás Waldhauser
TI - Almost associative operations generating a minimal clone
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2006
VL - 26
IS - 1
SP - 45
EP - 73
AB - Characterizations of 'almost associative' binary operations generating a minimal clone are given for two interpretations of the term 'almost associative'. One of them uses the associative spectrum, the other one uses the index of nonassociativity to measure how far an operation is from being associative.
LA - eng
KW - clone; minimal clone; groupoid; associativity; almost associative operation
UR - http://eudml.org/doc/276878
ER -

References

top
  1. [1] V.G. Bodnarčuk, L.A. Kalužnin, V.N. Kotov and B.A. Romov, Galois theory for Post algebras I-II, Kibernetika (Kiev) 3 (1969), 1-10; 5 (1969), 1-9 (Russian). 
  2. [2] A.C. Climescu, Études sur la théorie des systèmes multiplicatifs uniformes I. L'indice de non-associativité, Bull. École Polytech. Jassy 2 (1947), 347-371 (French). 
  3. [3] A.C. Climescu, L'indépendance des conditions d'associativité, Bull. Inst. Polytech. Jassy 1 (1955), 1-9 (Romanian). Zbl0068.02901
  4. [4] B. Csákány, All minimal clones on the three-element set, Acta Cybernet. 6 (3) (1983), 227-238. Zbl0537.08002
  5. [5] B. Csákány, On conservative minimal operations, Lectures in Universal Algebra (Szeged, 1983), Colloq. Math. Soc. János Bolyai, North-Holland, Amsterdam, 43 (1986), 49-60. 
  6. [6] B. Csákány and T. Waldhauser, Associative spectra of binary operations, Mult.-Valued Log. 5 (3) (2000), 175-200. Zbl0999.20054
  7. [7] A. Drápal and T. Kepka, Sets of associative triples, Europ. J. Combinatorics 6 (1985), 227-231. Zbl0612.05003
  8. [8] D. Geiger, Closed systems and functions of predicates, Pacific J. Math. 27 (1968), 95-100. Zbl0186.02502
  9. [9] P. Hájek, Die Szászschen Gruppoide, Mat.-Fys. Časopis Sloven. Akad. Vied 15 (1) (1965), 15-42 (German). 
  10. [10] P. Hájek, Berichtigung zu meiner arbeit 'Die Szászschen Gruppoide', Mat.-Fys. Časopis Sloven. Akad. Vied 15 (4) (1965) 331 (German). 
  11. [11] J. Ježek and R.W. Quackenbush, Minimal clones of conservative functions, Internat. J. Algebra Comput. 5 (6) (1995), 615-630. Zbl0842.08002
  12. [12] K.A. Kearnes, Minimal clones with abelian representations, Acta Sci. Math. (Szeged) 61 (1-4) (1995), 59-76. Zbl0841.08001
  13. [13] K.A. Kearnes and Á. Szendrei, The classification of commutative minimal clones, Discuss. Math. Algebra and Stochastic Methods 19 (1) (1999), 147-178. Zbl0937.08003
  14. [14] T. Kepka and M. Trch, Groupoids and the associative law I. (Associative triples), Acta Univ. Carol. Math. Phys. 33 (1) (1992), 69-86. Zbl0791.20084
  15. [15] T. Kepka and M. Trch, Groupoids and the associative law II. (Groupoids with small semigroup distance), Acta Univ. Carol. Math. Phys. 34 (1) (1993), 67-83. Zbl0809.20056
  16. [16] T. Kepka and M. Trch, Groupoids and the associative law III. (Szász-Hájek groupoids), Acta Univ. Carol. Math. Phys. 36 (1) (1995), 17-30. Zbl0828.20071
  17. [17] T. Kepka and M. Trch, Groupoids and the associative law IV. (Szász-Hájek groupoids of type (a,b,a)), Acta Univ. Carol. Math. Phys. 35 (1) (1994), 31-42. Zbl0819.20075
  18. [18] T. Kepka and M. Trch, Groupoids and the associative law V. (Szász-Hájek groupoids of type (a,a,b)), Acta Univ. Carol. Math. Phys. 36 (1) (1995), 31-44. Zbl0828.20072
  19. [19] T. Kepka and M. Trch, Groupoids and the associative law VI. (Szász-Hájek groupoids of type (a,b,c)), Acta Univ. Carol. Math. Phys. 38 (1) (1997), 13-22. Zbl0889.20040
  20. [20] L. Lévai and P.P. Pálfy, On binary minimal clones, Acta Cybernet. 12 (3) (1996), 279-294. Zbl0880.08001
  21. [21] P.P. Pálfy, Minimal clones, Preprint of the Math. Inst. Hungarian Acad. Sci. 27/1984. 
  22. [22] J. Płonka, On groups in which idempotent reducts form a chain, Colloq. Math. 29 (1974), 87-91. Zbl0279.20045
  23. [23] J. Płonka, On k-cyclic groupoids, Math. Japon. 30 (3) (1985), 371-382. Zbl0572.08004
  24. [24] E. Post, The two-valued iterative systems of mathematical logic, Annals of Mathematics Studies, No. 5, Princeton University Press, Princeton 1941. Zbl0063.06326
  25. [25] I.G. Rosenberg, Minimal clones I. The five types, Lectures in Universal Algebra (Szeged, 1983), Colloq. Math. Soc. János Bolyai, North-Holland, Amsterdam, 43 (1986), 405-427. 
  26. [26] N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://www.research.att.com/~njas/sequences, 2005. Zbl1274.11001
  27. [27] G. Szász, Die Unabhängigkeit der Assoziativitätsbedingungen, Acta Sci. Math. (Szeged) 15 (1953), 20-28 (German). Zbl0051.25203
  28. [28] B. Szczepara, Minimal clones generated by groupoids, Ph.D. Thesis, Université de Montréal 1995. 
  29. [29] Á. Szendrei, Clones in Universal Algebra, Séminaire de Mathématiques Supérieures, 99, Presses de L'Université de Montréal 1986. 
  30. [30] M.B. Szendrei, On closed sets of term functions on bands, Semigroups (Proc. Conf., Math. Res. Inst., Oberwolfach, 1978), pp. 156-181, Lecture Notes in Math., 855, Springer, Berlin 1981. 
  31. [31] T. Waldhauser, Minimal clones generated by majority operations, Algebra Universalis 44 (1,2) (2000), 15-26. Zbl1013.08004
  32. [32] T. Waldhauser, Minimal clones with weakly abelian representations, Acta Sci. Math. (Szeged) 69 (3,4) (2003), 505-521. Zbl1046.08001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.