Disturbance decoupling for nonlinear systems: A unified approach

Anna Maria Perdon; Yu Fan Zheng; Claude H. Moog; Giuseppe Conte

Kybernetika (1993)

  • Volume: 29, Issue: 5, page 479-484
  • ISSN: 0023-5954

How to cite

top

Perdon, Anna Maria, et al. "Disturbance decoupling for nonlinear systems: A unified approach." Kybernetika 29.5 (1993): 479-484. <http://eudml.org/doc/27689>.

@article{Perdon1993,
author = {Perdon, Anna Maria, Zheng, Yu Fan, Moog, Claude H., Conte, Giuseppe},
journal = {Kybernetika},
keywords = {disturbance decoupling problem; nonlinear systems; dynamic state feedback},
language = {eng},
number = {5},
pages = {479-484},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Disturbance decoupling for nonlinear systems: A unified approach},
url = {http://eudml.org/doc/27689},
volume = {29},
year = {1993},
}

TY - JOUR
AU - Perdon, Anna Maria
AU - Zheng, Yu Fan
AU - Moog, Claude H.
AU - Conte, Giuseppe
TI - Disturbance decoupling for nonlinear systems: A unified approach
JO - Kybernetika
PY - 1993
PB - Institute of Information Theory and Automation AS CR
VL - 29
IS - 5
SP - 479
EP - 484
LA - eng
KW - disturbance decoupling problem; nonlinear systems; dynamic state feedback
UR - http://eudml.org/doc/27689
ER -

References

top
  1. E. Delaleati, Sur les derivees de l'entree en representation et commande des systemes non lineaires, Ph.D. Thesis dissertation, Universite Paris-Sud 1993. (1993) 
  2. M. D. Di Benedetto J. W. Crizzle, C. H. Moog, Rank invariants of nonlinear systems, SIAM J. Control Optim. 27(1989), 658-672. (1989) MR0993292
  3. L. Cao, Y. F. Zheng, Disturbance decoupling via dynamic feedbacks, Internat. J. Systems Sci. 23 (1992), 683-694. (1992) MR1162848
  4. M. Fliess, Generalized controller canonical forms for linear and nonlinear dynamics, IEEE Trans. Automat. Control 35 (1990), 994-1001. (1990) Zbl0724.93010MR1065035
  5. H. J. C. Huijberts H. Nijmeijer, L. L.M. Van Der Wegen, Dynamic disturbance decoupling for nonlinear systems: the nonsquare and noninvertible case, In: Controlled Dynamical Systems (B. Bonnard, B. Bride, J. P. Gauthier and I. Kupka, eds.), Birkhauser, Boston 1991, pp. 243-252. (1991) MR1131998
  6. H. J. C. Huijberts H. Nijmeijer, L. L. M. Van Der Wegen, Dynamic disturbance decoupling for nonlinear systems, SIAM J. Control Optim. 30 (1992), 336-349. (1992) MR1149072
  7. A. Isidori, Nonlinear Control Theory, Second edition. Springer-Verlag, New York 1989. (1989) Zbl0672.00015MR1229759
  8. W. Respondek, Disturbance decoupling via dynamic feedback, In: Controlled Dynamical Systems (B. Bonnard, B. Bride, J. P. Gauthier and I. Kupka, eds.), Birkhauser, Boston 1991, pp. 347-357. (1991) Zbl0801.93023MR1132008
  9. L. L. M. van der Wegen, Local disturbance decoupling with stability for nonlinear systems, (Lecture Notes in Control and Information Sciences 166.) Springer-Verlag, Berlin 1991. (1991) Zbl0781.93019MR1143782
  10. W.M. Wonham, Linear Multivariate Control: a Geometric Approach, Third edition. Springer-Verlag, New York 1985. (1985) MR0770574
  11. Y. F. Zheng, L. Cao, Reduced inverses for controlled systems, Math. Control Signals Systems, to appear. MR1358078

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.