Toward a notion of canonical form for nonlinear systems

G. Conte; A. Perdon; C. Moog

Banach Center Publications (1995)

  • Volume: 32, Issue: 1, page 149-165
  • ISSN: 0137-6934

How to cite

top

Conte, G., Perdon, A., and Moog, C.. "Toward a notion of canonical form for nonlinear systems." Banach Center Publications 32.1 (1995): 149-165. <http://eudml.org/doc/262567>.

@article{Conte1995,
author = {Conte, G., Perdon, A., Moog, C.},
journal = {Banach Center Publications},
keywords = {nonlinear; canonical form},
language = {eng},
number = {1},
pages = {149-165},
title = {Toward a notion of canonical form for nonlinear systems},
url = {http://eudml.org/doc/262567},
volume = {32},
year = {1995},
}

TY - JOUR
AU - Conte, G.
AU - Perdon, A.
AU - Moog, C.
TI - Toward a notion of canonical form for nonlinear systems
JO - Banach Center Publications
PY - 1995
VL - 32
IS - 1
SP - 149
EP - 165
LA - eng
KW - nonlinear; canonical form
UR - http://eudml.org/doc/262567
ER -

References

top
  1. [1] G. Conte, C. H. Moog, A. M. Perdon and Y. F. Zheng, A generalized state space decomposition of nonlinear systems, in: Proc. 31st CDC IEEE, Tucson, 1992, 3676-3677. 
  2. [2] E. Delaleau and M. Fliess, An algebraic interpration of the structure algorithm with an application to feedback decoupling, in: Nonlinear Control Systems Design IFAC Symposium, Bordeaux, 1992, 489-494. 
  3. [3] M. D. Di Benedetto, J. W. Grizzle and C. H. Moog, Rank invariants for nonlinear systems, SIAM J. Control Optim. 27 (1989), 658-672. Zbl0696.93033
  4. [4] S. Diop and M. Fliess, On nonlinear observability, in: European Control Conference, Grenoble, 1991, 152-157 
  5. [5] M. Fliess, Nonlinear control theory and differential algebra, in: Proc. I.I.A.S.A. Conference on Modelling and Adaptive Control, Sopron, Hungary, 1986. 
  6. [6] M. Fliess, Automatique et corps différentiels, Forum Math. 1 (1989), 227-238. Zbl0701.93048
  7. [7] M. Fliess, Généralisation nonlinéaire de la forme canonique de commande et linéarisation par bouclage, C. R. Acad. Sci. Paris 308 (1989), 377-379. Zbl0664.93038
  8. [8] M. Fliess, Generalized controller canonical forms for linear and nonlinear dynamics, I.E.E.E. Trans. Automat. Control 35 (1990), 994-1001. Zbl0724.93010
  9. [9] H. Hammouri and J. P. Gauthier, Bilinearization up to output injection, Systems and Control Lett. 11 (1988), 139-149. Zbl0648.93024
  10. [10] H. Hammouri and J. P. Gauthier, Global time-varying linearization up to output injection, SIAM J. Control Optim. 30 (1992), 1295-1310. Zbl0771.93033
  11. [11] R. Hermann and A. J. Krener, Nonlinear controllability and observability, IEEE Trans. Automat Control AC-22 (1977), 728-740. Zbl0396.93015
  12. [12] A. Isidori, Nonlinear feedback, structure at infinity and the input-output linearization problem, in: Proc. MTNS 83, Beer Sheva, Lecture Notes in Control and Inform. Sci. 58, Springer, Berlin, 1984, 473-493. Zbl0538.93029
  13. [13] A. Isidori, Control of nonlinear systems via dynamic state-feedback, in: Algebraic and Geometric Methods in Nonlinear Control Theory, M. Fliess and M. Hazewinkel (eds.), Reidel, Dordrecht, 1986, 121-145. 
  14. [14] A. Isidori, Nonlinear Control Systems, 2nd ed., Springer, Berlin, 1989. 
  15. [15] A. Isidori and C. H. Moog, On the equivalence of the notion of transmission zeros, in: Modelling and Adaptive Contro, Proc. IIASA Conf., Sopron, Hungary, C. I. Byrnes and A. Kurszanski (eds.), Lecture Notes Control and Inform. Sci. 105, Springer, 1988, Berlin, 146-158. 
  16. [16] T. Kailath, Linear Systems, Prentice-Hall, New York, 1980. 
  17. [17] A. J. Krener, Normal form for linear and nonlinear sytems, in: Contemp. Math. 68, Amer. Math. Soc., 1987, 157-189. 
  18. [18] A. J. Krener and A. Isidori, Linearization by output injection and nonlinear observers, Systems Control Lett. 3 (1983), 47-52. Zbl0524.93030
  19. [19] R. Marino, W. Respondek and A. J. van der Shaft, Equivalence of nonlinear systems to input-output prime forms, SIAM J. Control Optim., to appear. Zbl0796.93049
  20. [20] C. H. Moog, F. Plestan, G. Conte and A. M. Perdon, On canonical forms of nonlinear systems, in: Proc. ECC 93, Groningen, 1993, 1514-1517. 
  21. [21] A. S. Morse, Structural invariants of linear multivariable systems, SIAM J. Control Optim. 11 (1973), 446-465. Zbl0259.93011
  22. [22] H. Nijmeijer and A. J. van der Shaft, Nonlinear Dynamics Control Systems, Springer, 1990. 
  23. [23] A. M. Perdon, G. Conte and C. H. Moog, Some canonical properties of nonlinear systems, in: Realization and Modelling in System Theory, Proc. MTNS 89, Amsterdam, 1989, 89-96. 
  24. [24] A. M. Perdon, Y. F. Zheng, C. H. Moog and G. Conte, Disturbance decoupling for nonlinear systems: a unified approach, Kybernetica 29 (1993), 479-484. Zbl0849.93015
  25. [25] W. Respondek, personal communication, 1994. 
  26. [26] J. Rudolph, Une forme canonique en bouclage quasi-statique, C.R. Acad. Sci. Paris 316 (1993), 1323-1328. Zbl0778.93010
  27. [27] S. N. Singh, A modified algorithm for invertibility in nonlinear systems, IEEE Trans. Automat. Control AC-26 (1981), 595-598. Zbl0488.93026
  28. [28] M. Zeitz, Canonical forms for nonlinear systems, in: Geometric Theory of Nonlinear Control Systems, B. Jakubczyk, W. Respondek and K. Tchon (eds.), Wrocław, Wydawnictwo Politechniki Wrocławskiej, 1985. 
  29. [29] Y. F. Zheng and L. Cao, Transfer structure of nonlinear systems, Tech. Rep., East China Normal Univ., 1993. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.