Toward a notion of canonical form for nonlinear systems
Banach Center Publications (1995)
- Volume: 32, Issue: 1, page 149-165
- ISSN: 0137-6934
Access Full Article
topHow to cite
topConte, G., Perdon, A., and Moog, C.. "Toward a notion of canonical form for nonlinear systems." Banach Center Publications 32.1 (1995): 149-165. <http://eudml.org/doc/262567>.
@article{Conte1995,
author = {Conte, G., Perdon, A., Moog, C.},
journal = {Banach Center Publications},
keywords = {nonlinear; canonical form},
language = {eng},
number = {1},
pages = {149-165},
title = {Toward a notion of canonical form for nonlinear systems},
url = {http://eudml.org/doc/262567},
volume = {32},
year = {1995},
}
TY - JOUR
AU - Conte, G.
AU - Perdon, A.
AU - Moog, C.
TI - Toward a notion of canonical form for nonlinear systems
JO - Banach Center Publications
PY - 1995
VL - 32
IS - 1
SP - 149
EP - 165
LA - eng
KW - nonlinear; canonical form
UR - http://eudml.org/doc/262567
ER -
References
top- [1] G. Conte, C. H. Moog, A. M. Perdon and Y. F. Zheng, A generalized state space decomposition of nonlinear systems, in: Proc. 31st CDC IEEE, Tucson, 1992, 3676-3677.
- [2] E. Delaleau and M. Fliess, An algebraic interpration of the structure algorithm with an application to feedback decoupling, in: Nonlinear Control Systems Design IFAC Symposium, Bordeaux, 1992, 489-494.
- [3] M. D. Di Benedetto, J. W. Grizzle and C. H. Moog, Rank invariants for nonlinear systems, SIAM J. Control Optim. 27 (1989), 658-672. Zbl0696.93033
- [4] S. Diop and M. Fliess, On nonlinear observability, in: European Control Conference, Grenoble, 1991, 152-157
- [5] M. Fliess, Nonlinear control theory and differential algebra, in: Proc. I.I.A.S.A. Conference on Modelling and Adaptive Control, Sopron, Hungary, 1986.
- [6] M. Fliess, Automatique et corps différentiels, Forum Math. 1 (1989), 227-238. Zbl0701.93048
- [7] M. Fliess, Généralisation nonlinéaire de la forme canonique de commande et linéarisation par bouclage, C. R. Acad. Sci. Paris 308 (1989), 377-379. Zbl0664.93038
- [8] M. Fliess, Generalized controller canonical forms for linear and nonlinear dynamics, I.E.E.E. Trans. Automat. Control 35 (1990), 994-1001. Zbl0724.93010
- [9] H. Hammouri and J. P. Gauthier, Bilinearization up to output injection, Systems and Control Lett. 11 (1988), 139-149. Zbl0648.93024
- [10] H. Hammouri and J. P. Gauthier, Global time-varying linearization up to output injection, SIAM J. Control Optim. 30 (1992), 1295-1310. Zbl0771.93033
- [11] R. Hermann and A. J. Krener, Nonlinear controllability and observability, IEEE Trans. Automat Control AC-22 (1977), 728-740. Zbl0396.93015
- [12] A. Isidori, Nonlinear feedback, structure at infinity and the input-output linearization problem, in: Proc. MTNS 83, Beer Sheva, Lecture Notes in Control and Inform. Sci. 58, Springer, Berlin, 1984, 473-493. Zbl0538.93029
- [13] A. Isidori, Control of nonlinear systems via dynamic state-feedback, in: Algebraic and Geometric Methods in Nonlinear Control Theory, M. Fliess and M. Hazewinkel (eds.), Reidel, Dordrecht, 1986, 121-145.
- [14] A. Isidori, Nonlinear Control Systems, 2nd ed., Springer, Berlin, 1989.
- [15] A. Isidori and C. H. Moog, On the equivalence of the notion of transmission zeros, in: Modelling and Adaptive Contro, Proc. IIASA Conf., Sopron, Hungary, C. I. Byrnes and A. Kurszanski (eds.), Lecture Notes Control and Inform. Sci. 105, Springer, 1988, Berlin, 146-158.
- [16] T. Kailath, Linear Systems, Prentice-Hall, New York, 1980.
- [17] A. J. Krener, Normal form for linear and nonlinear sytems, in: Contemp. Math. 68, Amer. Math. Soc., 1987, 157-189.
- [18] A. J. Krener and A. Isidori, Linearization by output injection and nonlinear observers, Systems Control Lett. 3 (1983), 47-52. Zbl0524.93030
- [19] R. Marino, W. Respondek and A. J. van der Shaft, Equivalence of nonlinear systems to input-output prime forms, SIAM J. Control Optim., to appear. Zbl0796.93049
- [20] C. H. Moog, F. Plestan, G. Conte and A. M. Perdon, On canonical forms of nonlinear systems, in: Proc. ECC 93, Groningen, 1993, 1514-1517.
- [21] A. S. Morse, Structural invariants of linear multivariable systems, SIAM J. Control Optim. 11 (1973), 446-465. Zbl0259.93011
- [22] H. Nijmeijer and A. J. van der Shaft, Nonlinear Dynamics Control Systems, Springer, 1990.
- [23] A. M. Perdon, G. Conte and C. H. Moog, Some canonical properties of nonlinear systems, in: Realization and Modelling in System Theory, Proc. MTNS 89, Amsterdam, 1989, 89-96.
- [24] A. M. Perdon, Y. F. Zheng, C. H. Moog and G. Conte, Disturbance decoupling for nonlinear systems: a unified approach, Kybernetica 29 (1993), 479-484. Zbl0849.93015
- [25] W. Respondek, personal communication, 1994.
- [26] J. Rudolph, Une forme canonique en bouclage quasi-statique, C.R. Acad. Sci. Paris 316 (1993), 1323-1328. Zbl0778.93010
- [27] S. N. Singh, A modified algorithm for invertibility in nonlinear systems, IEEE Trans. Automat. Control AC-26 (1981), 595-598. Zbl0488.93026
- [28] M. Zeitz, Canonical forms for nonlinear systems, in: Geometric Theory of Nonlinear Control Systems, B. Jakubczyk, W. Respondek and K. Tchon (eds.), Wrocław, Wydawnictwo Politechniki Wrocławskiej, 1985.
- [29] Y. F. Zheng and L. Cao, Transfer structure of nonlinear systems, Tech. Rep., East China Normal Univ., 1993.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.