The Smith normal form of product distance matrices
R. B. Bapat; Sivaramakrishnan Sivasubramanian
Special Matrices (2016)
- Volume: 4, Issue: 1, page 46-55
- ISSN: 2300-7451
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Bapat R. B. Resistance matrix and q-laplacian of a unicyclic graph. In Ramanujan Mathematical Society Lecture Notes Series, 7, Proceedings of ICDM 2006, Ed. R. Balakrishnan and C.E. Veni Madhavan (2008), pp. 63–72. Zbl1194.05030
- [2] Bapat R. B., Lal A. K., Pati S. A q-analogue of the distance matrix of a tree. Linear Algebra and its Applications 416 (2006), 799–814.[WoS] Zbl1092.05041
- [3] Bapat R. B., Raghavan T. E. S. Nonnegative Matrices and Applications. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 1997. Zbl0879.15015
- [4] Bapat R. B., Sivasubramanian S. Product Distance Matrix of a Graph and Squared Distance Matrix of a Tree. Applicable Analysis and Discrete Mathematics 7 (2013), 285–301. Zbl1299.05077
- [5] Chebotarev P. A class of graph-geodetic distances generalizing the shortest-path and the resistance distances. Discrete Applied Math 159, Issue 5, (2011), 295–302. [2][WoS] Zbl1209.05068
- [6] Chebotarev P. The graph bottleneck identity. Advances in Applied Mathematics 47, Issue 3, (2011), 403–413.[WoS] Zbl1232.05064
- [7] Dealba L. M. Determinants and Eigenvalues. In Handbook of Linear Algebra, L. Hogben, Ed. Chapman & Hall CRC Press, 2007, ch. 4.
- [8] Developers T. S. Sage Mathematics Software (Version 3.1.1), 2008. .
- [9] Klein D. J., Randić M. Resistance distance. Journal of Mathematical Chemistry 12, Issue 1, (1993), 81–95.[WoS]
- [10] Newman M. Integral Matrices. Academic Press, 1972. Zbl0254.15009
- [11] Shiu W. C. Invariant factors of graphs associated with hyperplane arrangements. Discrete Mathematics 288 (2004), 135–148. Zbl1056.05120