Page 1

Displaying 1 – 14 of 14

Showing per page

A practical application of kernel-based fuzzy discriminant analysis

Jian-Qiang Gao, Li-Ya Fan, Li Li, Li-Zhong Xu (2013)

International Journal of Applied Mathematics and Computer Science

A novel method for feature extraction and recognition called Kernel Fuzzy Discriminant Analysis (KFDA) is proposed in this paper to deal with recognition problems, e.g., for images. The KFDA method is obtained by combining the advantages of fuzzy methods and a kernel trick. Based on the orthogonal-triangular decomposition of a matrix and Singular Value Decomposition (SVD), two different variants, KFDA/QR and KFDA/SVD, of KFDA are obtained. In the proposed method, the membership degree is incorporated...

A subclass of strongly clean rings

Orhan Gurgun, Sait Halicioglu and Burcu Ungor (2015)

Communications in Mathematics

In this paper, we introduce a subclass of strongly clean rings. Let R be a ring with identity, J be the Jacobson radical of R , and let J # denote the set of all elements of R which are nilpotent in R / J . An element a R is called very J # -clean provided that there exists an idempotent e R such that a e = e a and a - e or a + e is an element of J # . A ring R is said to be very J # -clean in case every element in R is very J # -clean. We prove that every very J # -clean ring is strongly π -rad clean and has stable range one. It is shown...

All about the ⊥ with its applications in the linear statistical models

Augustyn Markiewicz, Simo Puntanen (2015)

Open Mathematics

For an n x m real matrix A the matrix A⊥ is defined as a matrix spanning the orthocomplement of the column space of A, when the orthogonality is defined with respect to the standard inner product ⟨x, y⟩ = x'y. In this paper we collect together various properties of the ⊥ operation and its applications in linear statistical models. Results covering the more general inner products are also considered. We also provide a rather extensive list of references

Block matrix approximation via entropy loss function

Malwina Janiszewska, Augustyn Markiewicz, Monika Mokrzycka (2020)

Applications of Mathematics

The aim of the paper is to present a procedure for the approximation of a symmetric positive definite matrix by symmetric block partitioned matrices with structured off-diagonal blocks. The entropy loss function is chosen as approximation criterion. This procedure is applied in a simulation study of the statistical problem of covariance structure identification.

Condition numbers of Hessenberg companion matrices

Michael Cox, Kevin N. Vander Meulen, Adam Van Tuyl, Joseph Voskamp (2024)

Czechoslovak Mathematical Journal

The Fiedler matrices are a large class of companion matrices that include the well-known Frobenius companion matrix. The Fiedler matrices are part of a larger class of companion matrices that can be characterized by a Hessenberg form. We demonstrate that the Hessenberg form of the Fiedler companion matrices provides a straight-forward way to compare the condition numbers of these matrices. We also show that there are other companion matrices which can provide a much smaller condition number than...

Factorizations for q-Pascal matrices of two variables

Thomas Ernst (2015)

Special Matrices

In this second article on q-Pascal matrices, we show how the previous factorizations by the summation matrices and the so-called q-unit matrices extend in a natural way to produce q-analogues of Pascal matrices of two variables by Z. Zhang and M. Liu as follows [...] We also find two different matrix products for [...]

On the binary system of factors of formal matrix rings

Weining Chen, Guixin Deng, Huadong Su (2020)

Czechoslovak Mathematical Journal

We investigate the formal matrix ring over R defined by a certain system of factors. We give a method for constructing formal matrix rings from non-negative integer matrices. We also show that the principal factor matrix of a binary system of factors determine the structure of the system.

Pentadiagonal Companion Matrices

Brydon Eastman, Kevin N. Vander Meulen (2016)

Special Matrices

The class of sparse companion matrices was recently characterized in terms of unit Hessenberg matrices. We determine which sparse companion matrices have the lowest bandwidth, that is, we characterize which sparse companion matrices are permutationally similar to a pentadiagonal matrix and describe how to find the permutation involved. In the process, we determine which of the Fiedler companion matrices are permutationally similar to a pentadiagonal matrix. We also describe how to find a Fiedler...

Studying the various properties of MIN and MAX matrices - elementary vs. more advanced methods

Mika Mattila, Pentti Haukkanen (2016)

Special Matrices

Let T = {z1, z2, . . . , zn} be a finite multiset of real numbers, where z1 ≤ z2 ≤ · · · ≤ zn. The purpose of this article is to study the different properties of MIN and MAX matrices of the set T with min(zi , zj) and max(zi , zj) as their ij entries, respectively.We are going to do this by interpreting these matrices as so-called meet and join matrices and by applying some known results for meet and join matrices. Once the theorems are found with the aid of advanced methods, we also consider whether...

Sylvesterovy–Hadamardovy, Kravčukovy a Sylvesterovy–Kacovy matice

Martina Štěpánová (2017)

Pokroky matematiky, fyziky a astronomie

Je zcela běžné, že speciální třídy matic jsou pojmenovány podle matematika, který je buď poprvé představil nebo podstatně přispěl k jejich studiu. Článek je věnován třem třídám matic nesoucích ve svých názvech jména čtyř matematiků: Sylvesterovým–Hadamardovým maticím, Kravčukovým maticím a Sylvesterovým–Kacovým maticím. Přestože na první pohled nemají uvedené třídy příliš společného, jsou v textu ukázány jejich vzájemné souvislosti.

The Smith normal form of product distance matrices

R. B. Bapat, Sivaramakrishnan Sivasubramanian (2016)

Special Matrices

Let G = (V, E) be a connected graph with 2-connected blocks H1, H2, . . . , Hr. Motivated by the exponential distance matrix, Bapat and Sivasubramanian in [4] defined its product distance matrix DG and showed that det DG only depends on det DHi for 1 ≤ i ≤ r and not on the manner in which its blocks are connected. In this work, when distances are symmetric, we generalize this result to the Smith Normal Form of DG and give an explicit formula for the invariant factors of DG.

Currently displaying 1 – 14 of 14

Page 1