On the transverse Scalar Curvature of a Compact Sasaki Manifold

Weiyong He

Complex Manifolds (2014)

  • Volume: 1, Issue: 1, page 52-63, electronic only
  • ISSN: 2300-7443

Abstract

top
We show that the standard picture regarding the notion of stability of constant scalar curvature metrics in Kähler geometry described by S.K. Donaldson [10, 11], which involves the geometry of infinitedimensional groups and spaces, can be applied to the constant scalar curvature metrics in Sasaki geometry with only few modification. We prove that the space of Sasaki metrics is an infinite dimensional symmetric space and that the transverse scalar curvature of a Sasaki metric is a moment map of the strict contactomophism group

How to cite

top

Weiyong He. "On the transverse Scalar Curvature of a Compact Sasaki Manifold." Complex Manifolds 1.1 (2014): 52-63, electronic only. <http://eudml.org/doc/276964>.

@article{WeiyongHe2014,
abstract = {We show that the standard picture regarding the notion of stability of constant scalar curvature metrics in Kähler geometry described by S.K. Donaldson [10, 11], which involves the geometry of infinitedimensional groups and spaces, can be applied to the constant scalar curvature metrics in Sasaki geometry with only few modification. We prove that the space of Sasaki metrics is an infinite dimensional symmetric space and that the transverse scalar curvature of a Sasaki metric is a moment map of the strict contactomophism group},
author = {Weiyong He},
journal = {Complex Manifolds},
keywords = {Transverse Scalar curvature; Symmetric space; Moment map; transverse scalar curvature; symmetric space; moment map},
language = {eng},
number = {1},
pages = {52-63, electronic only},
title = {On the transverse Scalar Curvature of a Compact Sasaki Manifold},
url = {http://eudml.org/doc/276964},
volume = {1},
year = {2014},
}

TY - JOUR
AU - Weiyong He
TI - On the transverse Scalar Curvature of a Compact Sasaki Manifold
JO - Complex Manifolds
PY - 2014
VL - 1
IS - 1
SP - 52
EP - 63, electronic only
AB - We show that the standard picture regarding the notion of stability of constant scalar curvature metrics in Kähler geometry described by S.K. Donaldson [10, 11], which involves the geometry of infinitedimensional groups and spaces, can be applied to the constant scalar curvature metrics in Sasaki geometry with only few modification. We prove that the space of Sasaki metrics is an infinite dimensional symmetric space and that the transverse scalar curvature of a Sasaki metric is a moment map of the strict contactomophism group
LA - eng
KW - Transverse Scalar curvature; Symmetric space; Moment map; transverse scalar curvature; symmetric space; moment map
UR - http://eudml.org/doc/276964
ER -

References

top
  1. [1] A.L. Besse, Einstein manifolds, Springer, 2nd edition. 
  2. [2] C.P. Boyer, K. Galicki; Sasaki geometry, Oxford Mathematical Monographs. Oxford University Press, Oxford, 2008. xii+613 pp. 
  3. [3] C.P. Boyer, K. Galicki, S.R. Simanca; Canonical Sasaki metrics, Comm. Math. Phys. 279 (2008), no. 3, 705-733. 
  4. [4] C.P. Boyer, K. Galicki, S.R. Simanca; The Sasaki cone and extremal Sasaki metrics, Riemannian topology and geometric structures on manifolds, 263-290, Progr. Math., 271, Birkh äuser Boston, Boston, MA, 2009. Zbl1171.53033
  5. [5] E. Calabi; Extremal Kähler metric, in Seminar of Differential Geometry, ed. S. T. Yau, Annals of Mathematics Studies 102, Princeton University Press (1982), 259-290. 
  6. [6] E. Cakabi; Extremal Kähler metrics II, Differential geometry and complex analysis, 95-114, Springer, Berlin, 1985. 
  7. [7] E. Calabi, X. Chen; The space of Kähler metrics II, J. Differential Geom. 61 (2002), no. 2, 173-193. Zbl1067.58010
  8. [8] X. Chen; The space of Kähler metrics, J. Differential Geom. 56 (2000), no. 2, 189-234. Zbl1041.58003
  9. [9] T. Collins, G. Szekelyhidi, K-Semistability for irregular Sasakian manifolds, arxiv.org/abs/1204.2230. 
  10. [10] S.K. Donaldson; Remarks on gauge theory, complex geometry and 4-manifold topology, Fields Medallists’ lectures, 384-403, World Sci. Ser. 20th Century Math., 5, World Sci. Publ., River Edge, NJ, 1997. 
  11. [11] S.K. Donaldson; Symmetric spaces, Kähler geometry and Hamiltonian dynamics. Northern California Symplectic Geometry Seminar, 13-33, Amer. Math. Soc. Transl. Ser. 2, 196, Amer. Math. Soc., Providence, RI, 1999. Zbl0972.53025
  12. [12] S.K. Donaldson; Scalar curvature and projective embeddings. I, J. Differential Geom. 59 (2001), no. 3, 479-522. Zbl1052.32017
  13. [13] S.K. Donaldson; Scalar curvature and stability of toric varieties, J. Differential Geom. 62 (2002), no. 2, 289-349. Zbl1074.53059
  14. [14] S.K. Donaldson, Constant scalar curvature metrics on toric surfaces, Geom. Funct. Anal. 19 (2009), 83-136.[Crossref] Zbl1177.53067
  15. [15] A. El Kacimi-Alaoui; Operateurs transversalement elliptiques sur un feuilletage riemannien et applications, Compositio Math. 79, (1990), 57-106. 
  16. [16] A. Fujiki; The moduli spaces and Kähler metrics of polarised algebraic varieties, Suguku 42 (1990), 231-243; English transl., Sugaku Expositions 5 (1992), 173-191. Zbl0763.32012
  17. [17] A. Futaki, An obstruction to the existence of Einstein Kähler metrics, Invent. Math. 73 (1983), no. 3, 437-443. Zbl0506.53030
  18. [18] A. Futaki, H. Ono, G. Wang; Transverse Kähler geometry of Sasaki manifolds and toric Sasaki-Einstein manifolds, J. Diff. Geom. 83 (2009), 585-636. Zbl1188.53042
  19. [19] J. P. Gauntlett, D. Martelli, J. Sparks, W. Waldram, Sasaki-Einstein metrics on S2 × S3, Adv. Theor. Math. Phys., 8 (2004), 711-734. 
  20. [20] J. P. Gauntlett, D. Martelli, J. Sparks, S.T. Yau; Obstructions to the Existence of Sasaki-Einstein Metrics, Commun. Math. Phy. 273 (2007), 803-827. 
  21. [21] P. Guan, X. Zhang; A geodesic equation in the space of Sasaki metrics, to appear in Yau’s Preceedings. Zbl1263.53039
  22. [22] P. Guan, X. Zhang; Regularity of the geodesic equation in the space of Sasaki metrics, arXiv:0906.5591. 
  23. [23] W. He, The Sasaki-Ricci ffow and compact Sasaki manifolds with positive transverse bisectional curvature, arXiv:1103.5807. Zbl1281.53067
  24. [24] E. Legendre, Existence and non-uniqueness of constant scalar curvature toric Sasaki metrics, Compositio Mathematica 147 (2011), pp. 1613-1634[WoS] Zbl1237.53039
  25. [25] A. Lichnerowicz, Sur les transformations analytiques des variétés káhlériennes compactes, (French) C. R. Acad. Sci. Paris 244 1957 3011-3013. Zbl0080.37501
  26. [26] T. Mabuchi; K-energy maps integrating Futaki invariants, Tohoku Math. J. (2) 38 (1986), no. 4, 575-593. Zbl0619.53040
  27. [27] T. Mabuchi; Some symplectic geometry on compact K¨hler manifolds. I, Osaka J. Math. 24 (1987), no. 2, 227-252. Zbl0645.53038
  28. [28] T. Mabuchi; Stability of extremal Kähler manifolds, Osaka J. Math. 41 (2004), no. 3, 563-582. Zbl1076.32017
  29. [29] D. Martelli, J. Sparks, S.T. Yau; Sasaki-Einstein Manifolds and Volume Minimisation, Commun.Math.Phys. 280 (2008), 611-673. 
  30. [30] Y. Matsushima, Sur la structure du groupe d’homéomorphismes analytiques dùne certaine variété kaehlérienne, Nagoya Math. J. 11 (1957), 145-150. Zbl0091.34803
  31. [31] D. McDuff, D. Salamon; Introduction to symplectic topology, Oxford Mathematical Monographs. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995. viii+425 pp. Zbl0844.58029
  32. [32] J. Ross, R. Thomas; Weighted projective embeddings, stability of orbifolds and constant scalar curvature Kähler metrics, arXiv:0907.5214. Zbl1244.32013
  33. [33] S. Semmes; Complex Monge-Ampère and symplectic manifolds, Amer. J. Math. 114 (1992), no. 3, 495-550. Zbl0790.32017
  34. [34] J. Sparks, Sasakian-Einstein manifolds, arXiv:1004.2461. 
  35. [35] G. Székelyhidi; Extremal metrics and K-stability. Bull. Lond. Math. Soc. 39 (2007), no. 1, 76-84. 
  36. [36] G. Tian; Kähler-Einstein metrics with positive scalar curvature Invent. Math. 130 (1997), no. 1, 1-37. Zbl0892.53027
  37. [37] S.T. Yau; Open problems in geometry. Differential geometry: partial differential equations on manifolds (Los Angeles, CA, 1990), 1-28, Proc. Sympos. Pure Math., 54, Part 1, Amer. Math. Soc., Providence, RI, 1993. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.