Opérateurs transversalement elliptiques sur un feuilletage riemannien et applications

Aziz El Kacimi-Alaoui

Compositio Mathematica (1990)

  • Volume: 73, Issue: 1, page 57-106
  • ISSN: 0010-437X

How to cite

top

El Kacimi-Alaoui, Aziz. "Opérateurs transversalement elliptiques sur un feuilletage riemannien et applications." Compositio Mathematica 73.1 (1990): 57-106. <http://eudml.org/doc/89997>.

@article{ElKacimi1990,
author = {El Kacimi-Alaoui, Aziz},
journal = {Compositio Mathematica},
keywords = {transversely elliptic operators for a Riemannian foliation; basic sections; basic differential operator; Hodge decomposition; transversely Kählerian; basic Kähler form; transverse Chern class; Ricci form of the transverse Kähler metric},
language = {fre},
number = {1},
pages = {57-106},
publisher = {Kluwer Academic Publishers},
title = {Opérateurs transversalement elliptiques sur un feuilletage riemannien et applications},
url = {http://eudml.org/doc/89997},
volume = {73},
year = {1990},
}

TY - JOUR
AU - El Kacimi-Alaoui, Aziz
TI - Opérateurs transversalement elliptiques sur un feuilletage riemannien et applications
JO - Compositio Mathematica
PY - 1990
PB - Kluwer Academic Publishers
VL - 73
IS - 1
SP - 57
EP - 106
LA - fre
KW - transversely elliptic operators for a Riemannian foliation; basic sections; basic differential operator; Hodge decomposition; transversely Kählerian; basic Kähler form; transverse Chern class; Ricci form of the transverse Kähler metric
UR - http://eudml.org/doc/89997
ER -

References

top
  1. [1] M.F. Atiyah, Elliptic operators and compact groups. Lecture Notes in Math, no. 401 (1974). Zbl0297.58009MR482866
  2. [2] E. Calabi, On Kähler manifolds with vanishing canonical class. Algebraic Geometry and Topology, A symposium in honor of Lefschetz, Princeton University Press (1955), 78-79. Zbl0080.15002MR85583
  3. [3] Y. Carriere, Flots riemanniens. Journées sur les structures transverses des feuilletages, Toulouse, Astérisque no 116 (1984). Zbl0548.58033MR755161
  4. [4] A. Connes, A survey of foliations and operator algebras. Proceedings of Symp. in Pure Math. Vol. 38 (1982). Zbl0531.57023MR679730
  5. [5] A. El Kacimi-Alaoui et G. Hector, Décomposition de Hodge basique pour un feuilletage riemannien. Ann. Inst. Fourier de Grenoble36, 3 (1986), 207-227. Zbl0586.57015MR865667
  6. [6] A. El Kacimi-Alaoui, V Sergiescu et G. Hector, La cohomologie basique d'un feuilletage riemannien est de dimension finie. Math. Z., 188 (1985), 593-599. Zbl0536.57013MR774559
  7. [7] E. Ghys, Feuilletages riemanniens sur les variétés simplement connexes. Ann. Inst. Fourier, 34, 4 (1984), 203-223. Zbl0525.57024MR766280
  8. [8] S. Goldberg, Curvature and Homology. Dover Publications, Inc., New-York. Zbl0962.53001MR1635338
  9. [9] P. Griffiths, and J. Harris, Principles of algebraic Geometry. Pure and Applied Mathematics - Interscience Series of Texts. Zbl0408.14001
  10. [10] A. Haefliger, Pseudo-groups of local isometries. In Differential Geometry, Santiago de Compostela, Sept. 1984, 174-197. L. Cordero editor, Research notes 131, Pitman (1985). Zbl0656.58042
  11. [11] F. Kamber and P. Tondeur, Foliated Bundles and Characteristic classes. Lecture Notes in Math., no. 493, Springer-Verlag (1975). Zbl0308.57011MR402773
  12. [12] F. Kamber, and P. Tondeur, Hodge de Rham theory for Riemannian foliations. Math. Ann.277, 415-431 (1987). Zbl0637.53043MR891583
  13. [13] C. Lazarov, An Index Theorem for foliations. Illinois J. of Math. Vol. 30 no. 1 (1986). Zbl0592.58049MR822386
  14. [14] P. Molino, Géométrie globale des feuilletages riemanniens. Pro. Kon. Neder. Akad., Ser. A, 1, 85 (1982), 45-76. Zbl0516.57016MR653455
  15. [15] R.S. Palais, Seminar on the Atiyah-Singer Index Theorem. Ann. of Math. Studies no. 57, Princeton University Press (1965). Zbl0137.17002MR198494
  16. [16] B.L. Reinhart, Harmonic integrals on almost product manifolds. Trans. AMS, 88 (1958), 243-276. Zbl0081.31602MR104937
  17. [17] B.L. Reinhart, Foliated manifold with bundle-like metric. Ann. of Math., 69 (1959), p. 119-132. Zbl0122.16604MR107279
  18. [18] M. Saralegui, The Euler Class for flow of isometries. Research Notes in Math131 (1985) edited by L.A. Cordero. Zbl0651.57018
  19. [19] Seminaire Palaiseau, Première classe de Chern et courbure de Ricci: preuve de la conjecture de Calabi - Astérisque no. 58 (1978). Zbl0397.35028
  20. [20] J.P. Serre, Un théorème de dualité. Comment. Math. Helv., 29, (1955), 9-26. Zbl0067.16101MR67489
  21. [21] R.C. Wells, Differential Analysis on Complex Manifolds. G. T.M. no. 65, Springer-Verlag (1979). Zbl0435.32004
  22. [22] S.T. Yau, On the Ricci curvature of a compact Kählerian manifold and the complex Monge-Ampère equation. Comm. Pure and Appl. Math. XXVI (1978), 339-411. Zbl0369.53059MR480350

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.