Free end-point linear-quadratic control subject to implicit continuous- time systems: Necessary and sufficient conditions for solvability

Ton Geerts

Kybernetika (1993)

  • Volume: 29, Issue: 5, page 431-438
  • ISSN: 0023-5954

How to cite

top

Geerts, Ton. "Free end-point linear-quadratic control subject to implicit continuous- time systems: Necessary and sufficient conditions for solvability." Kybernetika 29.5 (1993): 431-438. <http://eudml.org/doc/27698>.

@article{Geerts1993,
author = {Geerts, Ton},
journal = {Kybernetika},
keywords = {implicit continuous-time system; linear-quadratic optimal control},
language = {eng},
number = {5},
pages = {431-438},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Free end-point linear-quadratic control subject to implicit continuous- time systems: Necessary and sufficient conditions for solvability},
url = {http://eudml.org/doc/27698},
volume = {29},
year = {1993},
}

TY - JOUR
AU - Geerts, Ton
TI - Free end-point linear-quadratic control subject to implicit continuous- time systems: Necessary and sufficient conditions for solvability
JO - Kybernetika
PY - 1993
PB - Institute of Information Theory and Automation AS CR
VL - 29
IS - 5
SP - 431
EP - 438
LA - eng
KW - implicit continuous-time system; linear-quadratic optimal control
UR - http://eudml.org/doc/27698
ER -

References

top
  1. D. J. Bender, A. J. Laub, The linear-quadratic optimal regulator for descriptor systems, IEEE Trans. Automat. Control AC-32 (1987), 672-688. (1987) Zbl0624.93030MR0896834
  2. D. Cobb, Descriptor variable systems and optimal state regulation, IEEE Trans. Automat. Control AC-28 (19S3), 601-611. (19S3) MR0712957
  3. A. H. W. Geerts, M. L. J. Hautus, The output-stabilizable subspace and linear optimal control, In: Robust Control of Linear Systems and Nonlinear Control, Progress in Systems and Control Theory, Vol. 4, Birkhauser, Boston 1990, pp. 113-120. (1990) Zbl0735.93061MR1115381
  4. T. Geerts, A necessary and sufficient condition for solvability of the linear-quadratic control problem without stability, Systems Control Lett. 11 (1988), 47-51. (1988) Zbl0644.49018MR0949889
  5. T. Geerts, All optimal controls for the singular linear-quadratic problem without stability; a new interpretation of the optimal cost, Linear Algebra Appl. 116 (1989), 135-181. (1989) Zbl0674.49001MR0989722
  6. T. Geerts, Solvability conditions, consistency and weak consistency for linear differential-algebraic equations and time-invariant singular systems: The general case, Linear Algebra Appl. 181 (1993), 111-130. (1993) Zbl0772.34002MR1204345
  7. T. Geerts, Invariant subspaces and invertibility properties for singular systems: The general case, Linear Algebra Appl. 183 (1993), 61-88. (1993) Zbl0774.93038MR1208197
  8. T. Geerts, Regularity and singularity in linear-quadratic control subject to implicit continuous-time systems, Circuits, Systems Signal Process., to appear. Zbl0809.93030MR1247789
  9. M. L. J. Hautus, The formal Laplace transform for smooth linear systems, (Lecture Notes in Economics and Mathematical Systems 131.) Springer-Verlag, Berlin 1976, pp. 29-46. (1976) Zbl0345.93022MR0682787
  10. M. L. J. Hautus, L. M. Silverman, System structure and singular control, Linear Algebra Appl. 50 (1983), 369-402. (1983) Zbl0522.93021MR0699568
  11. L. Schwartz, Theorie des Distributions, Hermann, Paris 1978. (1978) Zbl0399.46028MR0209834
  12. G. C. Verghese B.C. Levy, T. Kailath, A generalized state-space for singular systems, IEEE Trans. Automat. Control AC-26 (1981), 811-831. (1981) MR0635842
  13. J. C. Willems A. Kitapci, L.M. Silverman, Singular optimal control: A geometric approach, SIAM J. Control Optim. 24 (1986), 323-337. (1986) MR0826519

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.