An adaptive finite element method in reconstruction of coefficients in Maxwell's equations from limited observations
Larisa Beilina; Samar Hosseinzadegan
Applications of Mathematics (2016)
- Volume: 61, Issue: 3, page 253-286
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topBeilina, Larisa, and Hosseinzadegan, Samar. "An adaptive finite element method in reconstruction of coefficients in Maxwell's equations from limited observations." Applications of Mathematics 61.3 (2016): 253-286. <http://eudml.org/doc/276982>.
@article{Beilina2016,
abstract = {We propose an adaptive finite element method for the solution of a coefficient inverse problem of simultaneous reconstruction of the dielectric permittivity and magnetic permeability functions in the Maxwell's system using limited boundary observations of the electric field in 3D. We derive a posteriori error estimates in the Tikhonov functional to be minimized and in the regularized solution of this functional, as well as formulate the corresponding adaptive algorithm. Our numerical experiments justify the efficiency of our a posteriori estimates and show significant improvement of the reconstructions obtained on locally adaptively refined meshes.},
author = {Beilina, Larisa, Hosseinzadegan, Samar},
journal = {Applications of Mathematics},
keywords = {Maxwell's system; coefficient inverse problem; Tikhonov functional; Lagrangian approach; a posteriori error estimate; Maxwell's system; coefficient inverse problem; Tikhonov functional; Lagrangian approach; a posteriori error estimate},
language = {eng},
number = {3},
pages = {253-286},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {An adaptive finite element method in reconstruction of coefficients in Maxwell's equations from limited observations},
url = {http://eudml.org/doc/276982},
volume = {61},
year = {2016},
}
TY - JOUR
AU - Beilina, Larisa
AU - Hosseinzadegan, Samar
TI - An adaptive finite element method in reconstruction of coefficients in Maxwell's equations from limited observations
JO - Applications of Mathematics
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 3
SP - 253
EP - 286
AB - We propose an adaptive finite element method for the solution of a coefficient inverse problem of simultaneous reconstruction of the dielectric permittivity and magnetic permeability functions in the Maxwell's system using limited boundary observations of the electric field in 3D. We derive a posteriori error estimates in the Tikhonov functional to be minimized and in the regularized solution of this functional, as well as formulate the corresponding adaptive algorithm. Our numerical experiments justify the efficiency of our a posteriori estimates and show significant improvement of the reconstructions obtained on locally adaptively refined meshes.
LA - eng
KW - Maxwell's system; coefficient inverse problem; Tikhonov functional; Lagrangian approach; a posteriori error estimate; Maxwell's system; coefficient inverse problem; Tikhonov functional; Lagrangian approach; a posteriori error estimate
UR - http://eudml.org/doc/276982
ER -
References
top- Assous, F., Degond, P., Heintze, E., Raviart, P. A., Segre, J., 10.1006/jcph.1993.1214, J. Comput. Phys. 109 (1993), 222-237. (1993) Zbl0795.65087MR1253460DOI10.1006/jcph.1993.1214
- Bakushinsky, A. B., Kokurin, M. Y., Smirnova, A., Iterative Methods for Ill-Posed Problems. An Introduction, Inverse and Ill-Posed Problems Series 54 Walter de Gruyter, Berlin (2011). (2011) Zbl1215.47013MR2757493
- Beilina, L., Adaptive hybrid FEM/FDM methods for inverse scattering problems, Inverse Problems and Information Technologies, V.1, N.3 73-116 (2002). (2002)
- Beilina, L., 10.1080/00036811.2010.502116, Appl. Anal. 90 (2011), 1461-1479. (2011) Zbl1223.78010MR2832218DOI10.1080/00036811.2010.502116
- Beilina, L., 10.2478/s11533-013-0202-3, Cent. European J. Math. 11 (2013), 702-733, DOI 10.2478/s11533-013-0202-3. (2013) Zbl1267.78044MR3015394DOI10.2478/s11533-013-0202-3
- Beilina, L., Cristofol, M., Niinimäki, K., Optimization approach for the simultaneous reconstruction of the dielectric permittivity and magnetic permeability functions from limited observations, Inverse Probl. Imaging 9 1-25 (2015). (2015) Zbl1308.35296MR3305884
- Beilina, L., Hosseinzadegan, S., An adaptive finite element method in reconstruction of coefficients in Maxwell's equations from limited observations, ArXiv:1510.07525 (2015). (2015) MR3502111
- Beilina, L., Klibanov, M. V., Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems, Springer, New York (2012). (2012) Zbl1255.65168
- Beilina, L., Klibanov, M. V., Kokurin, M. Yu., 10.1007/s10958-010-9921-1, J. Math. Sci., New York 167 279-325 (2010), translation from Probl. Mat. Anal. 46 3-44 (2010), Russian original. (2010) Zbl1286.65147MR2839023DOI10.1007/s10958-010-9921-1
- Beilina, L., Thành, N. T., Klibanov, M. V., Malmberg, J. B., Reconstruction of shapes and refractive indices from backscattering experimental data using the adaptivity, Inverse Probl. 30 28 pages, Article ID 105007 (2014). (2014) Zbl1327.35429MR3274607
- Bellassoued, M., Cristofol, M., Soccorsi, E., Inverse boundary value problem for the dynamical heterogeneous Maxwell's system, Inverse Probl. 28 18 pages, Article ID 095009 (2012). (2012) Zbl1250.35181MR2966179
- Brenner, S. C., Scott, L. R., 10.1007/978-1-4757-3658-8_7, Texts in Applied Mathematics 15 Springer, Berlin (2002). (2002) Zbl1012.65115MR1894376DOI10.1007/978-1-4757-3658-8_7
- P. Ciarlet, Jr., H. Wu, J. Zou, 10.1137/120899856, SIAM J. Numer. Anal. 52 (2014), 779-807. (2014) MR3188392DOI10.1137/120899856
- Cohen, G. C., Higher Order Numerical Methods for Transient Wave Equations, Scientific Computation Springer, Berlin (2002). (2002) Zbl0985.65096MR1870851
- Courant, R., Friedrichs, K., Lewy, H., 10.1147/rd.112.0215, IBM J. Res. Dev. 11 (1967), 215-234. (1967) Zbl0145.40402MR0213764DOI10.1147/rd.112.0215
- Engl, H. W., Hanke, M., Neubauer, A., Regularization of Inverse Problems, Mathematics and Its Applications 375 Kluwer Academic Publishers, Dordrecht (1996). (1996) Zbl0859.65054MR1408680
- Eriksson, K., Estep, D., Johnson, C., Applied Mathematics: Body and Soul. Vol. 3. Calculus in Several Dimensions, Springer, Berlin (2004). (2004) MR2020205
- Hosseinzadegan, S., Iteratively regularized adaptive finite element method for reconstruction of coefficients in Maxwell's system, Master's Thesis in Applied Mathematics Department of Mathematical Sciences, Chalmers University of Technology and Gothenburg University (2015). (2015)
- Ito, K., Jin, B., Takeuchi, T., Multi-parameter Tikhonov regularization, Methods Appl. Anal. 18 (2011), 31-46. (2011) Zbl1285.65032MR2804535
- Johnson, C., Szepessy, A., 10.1002/cpa.3160480302, Commun. Pure Appl. Math. 48 199-234 (1995). (1995) Zbl0826.65088MR1322810DOI10.1002/cpa.3160480302
- Klibanov, M. V., Bakushinsky, A. B., Beilina, L., 10.1515/jiip.2011.024, J. Inverse Ill-Posed Probl. 19 83-105 (2011). (2011) Zbl1279.35113MR2794397DOI10.1515/jiip.2011.024
- Křížek, M., Neittaanmäki, P., Finite Element Approximation of Variational Problems and Applications, Pitman Monographs and Surveys in Pure and Applied Mathematics 50 Longman Scientific & Technical, Harlow; John Wiley & Sons, New York (1990). (1990) MR1066462
- Ladyzhenskaya, O. A., 10.1007/978-1-4757-4317-3, Applied Mathematical Sciences 49 Springer, New York (1985). (1985) Zbl0588.35003MR0793735DOI10.1007/978-1-4757-4317-3
- Malmberg, J. B., A posteriori error estimation in a finite element method for reconstruction of dielectric permittivity, ArXiv:1502.07658 (2015). (2015) MR3279172
- Malmberg, J. B., A posteriori error estimate in the Lagrangian setting for an inverse problem based on a new formulation of Maxwell's system, L. Beilina Inverse Problems and Applications Selected Papers Based on the Presentations at the Third Annual Workshop on Inverse Problems, Stockholm, 2013 Springer Proceedings in Mathematics and Statistics 120 (2015), 43-53. (2015) Zbl1319.78014MR3343199
- Munz, C. D., Omnes, P., Schneider, R., Sonnendrücker, E., Voß, U., 10.1006/jcph.2000.6507, J. Comput. Phys. 161 (2000), 484-511. (2000) Zbl0970.78010MR1764247DOI10.1006/jcph.2000.6507
- PETSc Team, PETSc, Portable, Extensible Toolkit for Scientific Computation, http://www.mcs.anl.gov/petsc/.
- Pironneau, O., Optimal Shape Design for Elliptic Systems, Springer Series in Computational Physics Springer, New York (1984). (1984) Zbl0534.49001MR0725856
- Scott, L. R., Zhang, S., 10.1090/S0025-5718-1990-1011446-7, Math. Comput. 54 (1990), 483-493. (1990) Zbl0696.65007MR1011446DOI10.1090/S0025-5718-1990-1011446-7
- Smith, D. R., Schultz, S., Markoš, P., Soukoulis, C. M., 10.1103/PhysRevB.65.195104, Phys. Rev. B 65 (2002), DOI:10.1103/PhysRevB.65.195104. (2002) DOI10.1103/PhysRevB.65.195104
- Tikhonov, A. N., Goncharskiy, A. V., Stepanov, V. V., Kochikov, I. V., Ill-posed problems of the image processing, DAN USSR 294 832-837 (1987). (1987) MR0898748
- Tikhonov, A. N., Goncharsky, A. V., Stepanov, V. V., Yagola, A. G., Numerical Methods for the Solution of Ill-Posed Problems. Rev, Mathematics and Its Applications 328 Kluwer Academic Publishers, Dordrecht (1995). (1995) Zbl0831.65059MR1350538
- waves24.com, WavES: The software package, http://www.waves24.com/.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.