An adaptive finite element method in reconstruction of coefficients in Maxwell's equations from limited observations

Larisa Beilina; Samar Hosseinzadegan

Applications of Mathematics (2016)

  • Volume: 61, Issue: 3, page 253-286
  • ISSN: 0862-7940

Abstract

top
We propose an adaptive finite element method for the solution of a coefficient inverse problem of simultaneous reconstruction of the dielectric permittivity and magnetic permeability functions in the Maxwell's system using limited boundary observations of the electric field in 3D. We derive a posteriori error estimates in the Tikhonov functional to be minimized and in the regularized solution of this functional, as well as formulate the corresponding adaptive algorithm. Our numerical experiments justify the efficiency of our a posteriori estimates and show significant improvement of the reconstructions obtained on locally adaptively refined meshes.

How to cite

top

Beilina, Larisa, and Hosseinzadegan, Samar. "An adaptive finite element method in reconstruction of coefficients in Maxwell's equations from limited observations." Applications of Mathematics 61.3 (2016): 253-286. <http://eudml.org/doc/276982>.

@article{Beilina2016,
abstract = {We propose an adaptive finite element method for the solution of a coefficient inverse problem of simultaneous reconstruction of the dielectric permittivity and magnetic permeability functions in the Maxwell's system using limited boundary observations of the electric field in 3D. We derive a posteriori error estimates in the Tikhonov functional to be minimized and in the regularized solution of this functional, as well as formulate the corresponding adaptive algorithm. Our numerical experiments justify the efficiency of our a posteriori estimates and show significant improvement of the reconstructions obtained on locally adaptively refined meshes.},
author = {Beilina, Larisa, Hosseinzadegan, Samar},
journal = {Applications of Mathematics},
keywords = {Maxwell's system; coefficient inverse problem; Tikhonov functional; Lagrangian approach; a posteriori error estimate; Maxwell's system; coefficient inverse problem; Tikhonov functional; Lagrangian approach; a posteriori error estimate},
language = {eng},
number = {3},
pages = {253-286},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {An adaptive finite element method in reconstruction of coefficients in Maxwell's equations from limited observations},
url = {http://eudml.org/doc/276982},
volume = {61},
year = {2016},
}

TY - JOUR
AU - Beilina, Larisa
AU - Hosseinzadegan, Samar
TI - An adaptive finite element method in reconstruction of coefficients in Maxwell's equations from limited observations
JO - Applications of Mathematics
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 3
SP - 253
EP - 286
AB - We propose an adaptive finite element method for the solution of a coefficient inverse problem of simultaneous reconstruction of the dielectric permittivity and magnetic permeability functions in the Maxwell's system using limited boundary observations of the electric field in 3D. We derive a posteriori error estimates in the Tikhonov functional to be minimized and in the regularized solution of this functional, as well as formulate the corresponding adaptive algorithm. Our numerical experiments justify the efficiency of our a posteriori estimates and show significant improvement of the reconstructions obtained on locally adaptively refined meshes.
LA - eng
KW - Maxwell's system; coefficient inverse problem; Tikhonov functional; Lagrangian approach; a posteriori error estimate; Maxwell's system; coefficient inverse problem; Tikhonov functional; Lagrangian approach; a posteriori error estimate
UR - http://eudml.org/doc/276982
ER -

References

top
  1. Assous, F., Degond, P., Heintze, E., Raviart, P. A., Segre, J., 10.1006/jcph.1993.1214, J. Comput. Phys. 109 (1993), 222-237. (1993) Zbl0795.65087MR1253460DOI10.1006/jcph.1993.1214
  2. Bakushinsky, A. B., Kokurin, M. Y., Smirnova, A., Iterative Methods for Ill-Posed Problems. An Introduction, Inverse and Ill-Posed Problems Series 54 Walter de Gruyter, Berlin (2011). (2011) Zbl1215.47013MR2757493
  3. Beilina, L., Adaptive hybrid FEM/FDM methods for inverse scattering problems, Inverse Problems and Information Technologies, V.1, N.3 73-116 (2002). (2002) 
  4. Beilina, L., 10.1080/00036811.2010.502116, Appl. Anal. 90 (2011), 1461-1479. (2011) Zbl1223.78010MR2832218DOI10.1080/00036811.2010.502116
  5. Beilina, L., 10.2478/s11533-013-0202-3, Cent. European J. Math. 11 (2013), 702-733, DOI 10.2478/s11533-013-0202-3. (2013) Zbl1267.78044MR3015394DOI10.2478/s11533-013-0202-3
  6. Beilina, L., Cristofol, M., Niinimäki, K., Optimization approach for the simultaneous reconstruction of the dielectric permittivity and magnetic permeability functions from limited observations, Inverse Probl. Imaging 9 1-25 (2015). (2015) Zbl1308.35296MR3305884
  7. Beilina, L., Hosseinzadegan, S., An adaptive finite element method in reconstruction of coefficients in Maxwell's equations from limited observations, ArXiv:1510.07525 (2015). (2015) MR3502111
  8. Beilina, L., Klibanov, M. V., Approximate Global Convergence and Adaptivity for Coefficient Inverse Problems, Springer, New York (2012). (2012) Zbl1255.65168
  9. Beilina, L., Klibanov, M. V., Kokurin, M. Yu., 10.1007/s10958-010-9921-1, J. Math. Sci., New York 167 279-325 (2010), translation from Probl. Mat. Anal. 46 3-44 (2010), Russian original. (2010) Zbl1286.65147MR2839023DOI10.1007/s10958-010-9921-1
  10. Beilina, L., Thành, N. T., Klibanov, M. V., Malmberg, J. B., Reconstruction of shapes and refractive indices from backscattering experimental data using the adaptivity, Inverse Probl. 30 28 pages, Article ID 105007 (2014). (2014) Zbl1327.35429MR3274607
  11. Bellassoued, M., Cristofol, M., Soccorsi, E., Inverse boundary value problem for the dynamical heterogeneous Maxwell's system, Inverse Probl. 28 18 pages, Article ID 095009 (2012). (2012) Zbl1250.35181MR2966179
  12. Brenner, S. C., Scott, L. R., 10.1007/978-1-4757-3658-8_7, Texts in Applied Mathematics 15 Springer, Berlin (2002). (2002) Zbl1012.65115MR1894376DOI10.1007/978-1-4757-3658-8_7
  13. P. Ciarlet, Jr., H. Wu, J. Zou, 10.1137/120899856, SIAM J. Numer. Anal. 52 (2014), 779-807. (2014) MR3188392DOI10.1137/120899856
  14. Cohen, G. C., Higher Order Numerical Methods for Transient Wave Equations, Scientific Computation Springer, Berlin (2002). (2002) Zbl0985.65096MR1870851
  15. Courant, R., Friedrichs, K., Lewy, H., 10.1147/rd.112.0215, IBM J. Res. Dev. 11 (1967), 215-234. (1967) Zbl0145.40402MR0213764DOI10.1147/rd.112.0215
  16. Engl, H. W., Hanke, M., Neubauer, A., Regularization of Inverse Problems, Mathematics and Its Applications 375 Kluwer Academic Publishers, Dordrecht (1996). (1996) Zbl0859.65054MR1408680
  17. Eriksson, K., Estep, D., Johnson, C., Applied Mathematics: Body and Soul. Vol. 3. Calculus in Several Dimensions, Springer, Berlin (2004). (2004) MR2020205
  18. Hosseinzadegan, S., Iteratively regularized adaptive finite element method for reconstruction of coefficients in Maxwell's system, Master's Thesis in Applied Mathematics Department of Mathematical Sciences, Chalmers University of Technology and Gothenburg University (2015). (2015) 
  19. Ito, K., Jin, B., Takeuchi, T., Multi-parameter Tikhonov regularization, Methods Appl. Anal. 18 (2011), 31-46. (2011) Zbl1285.65032MR2804535
  20. Johnson, C., Szepessy, A., 10.1002/cpa.3160480302, Commun. Pure Appl. Math. 48 199-234 (1995). (1995) Zbl0826.65088MR1322810DOI10.1002/cpa.3160480302
  21. Klibanov, M. V., Bakushinsky, A. B., Beilina, L., 10.1515/jiip.2011.024, J. Inverse Ill-Posed Probl. 19 83-105 (2011). (2011) Zbl1279.35113MR2794397DOI10.1515/jiip.2011.024
  22. Křížek, M., Neittaanmäki, P., Finite Element Approximation of Variational Problems and Applications, Pitman Monographs and Surveys in Pure and Applied Mathematics 50 Longman Scientific & Technical, Harlow; John Wiley & Sons, New York (1990). (1990) MR1066462
  23. Ladyzhenskaya, O. A., 10.1007/978-1-4757-4317-3, Applied Mathematical Sciences 49 Springer, New York (1985). (1985) Zbl0588.35003MR0793735DOI10.1007/978-1-4757-4317-3
  24. Malmberg, J. B., A posteriori error estimation in a finite element method for reconstruction of dielectric permittivity, ArXiv:1502.07658 (2015). (2015) MR3279172
  25. Malmberg, J. B., A posteriori error estimate in the Lagrangian setting for an inverse problem based on a new formulation of Maxwell's system, L. Beilina Inverse Problems and Applications Selected Papers Based on the Presentations at the Third Annual Workshop on Inverse Problems, Stockholm, 2013 Springer Proceedings in Mathematics and Statistics 120 (2015), 43-53. (2015) Zbl1319.78014MR3343199
  26. Munz, C. D., Omnes, P., Schneider, R., Sonnendrücker, E., Voß, U., 10.1006/jcph.2000.6507, J. Comput. Phys. 161 (2000), 484-511. (2000) Zbl0970.78010MR1764247DOI10.1006/jcph.2000.6507
  27. PETSc Team, PETSc, Portable, Extensible Toolkit for Scientific Computation, http://www.mcs.anl.gov/petsc/. 
  28. Pironneau, O., Optimal Shape Design for Elliptic Systems, Springer Series in Computational Physics Springer, New York (1984). (1984) Zbl0534.49001MR0725856
  29. Scott, L. R., Zhang, S., 10.1090/S0025-5718-1990-1011446-7, Math. Comput. 54 (1990), 483-493. (1990) Zbl0696.65007MR1011446DOI10.1090/S0025-5718-1990-1011446-7
  30. Smith, D. R., Schultz, S., Markoš, P., Soukoulis, C. M., 10.1103/PhysRevB.65.195104, Phys. Rev. B 65 (2002), DOI:10.1103/PhysRevB.65.195104. (2002) DOI10.1103/PhysRevB.65.195104
  31. Tikhonov, A. N., Goncharskiy, A. V., Stepanov, V. V., Kochikov, I. V., Ill-posed problems of the image processing, DAN USSR 294 832-837 (1987). (1987) MR0898748
  32. Tikhonov, A. N., Goncharsky, A. V., Stepanov, V. V., Yagola, A. G., Numerical Methods for the Solution of Ill-Posed Problems. Rev, Mathematics and Its Applications 328 Kluwer Academic Publishers, Dordrecht (1995). (1995) Zbl0831.65059MR1350538
  33. waves24.com, WavES: The software package, http://www.waves24.com/. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.