Couples of lower and upper slopes and resonant second order ordinary differential equations with nonlocal boundary conditions
Jean Mawhin; Katarzyna Szymańska-Dębowska
Mathematica Bohemica (2016)
- Volume: 141, Issue: 2, page 239-259
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topMawhin, Jean, and Szymańska-Dębowska, Katarzyna. "Couples of lower and upper slopes and resonant second order ordinary differential equations with nonlocal boundary conditions." Mathematica Bohemica 141.2 (2016): 239-259. <http://eudml.org/doc/276990>.
@article{Mawhin2016,
abstract = {A couple ($\sigma ,\tau $) of lower and upper slopes for the resonant second order boundary value problem \[ x^\{\prime \prime \} = f(t,x,x^\{\prime \}), \quad x(0) = 0,\quad x^\{\prime \}(1) = \int \_0^1 x^\{\prime \}(s) \{\rm d\}g(s), \]
with $g$ increasing on $[0,1]$ such that $\int _0^1 dg = 1$, is a couple of functions $\sigma , \tau \in C^1([0,1])$ such that $\sigma (t) \le \tau (t)$ for all $t \in [0,1]$, \begin\{gather\} \sigma ^\{\prime \}(t) \ge f(t,x,\sigma (t)), \quad \sigma (1) \le \int \_0^1 \sigma (s) \{\rm d\}g(s),\nonumber \\ \tau ^\{\prime \}(t) \le f(t,x,\tau (t)), \quad \tau (1) \ge \int \_0^1 \tau (s) \{\rm d\}g(s),\nonumber \end\{gather\}
in the stripe $\int _0^t\sigma (s) \{\rm d\}s \le x \le \int _0^t \tau (s) \{\rm d\}s$ and $t \in [0,1]$. It is proved that the existence of such a couple $(\sigma ,\tau )$ implies the existence and localization of a solution to the boundary value problem. Multiplicity results are also obtained.},
author = {Mawhin, Jean, Szymańska-Dębowska, Katarzyna},
journal = {Mathematica Bohemica},
keywords = {nonlocal boundary value problem; lower solution; upper solution; lower slope; upper slope; Leray-Schauder degree},
language = {eng},
number = {2},
pages = {239-259},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Couples of lower and upper slopes and resonant second order ordinary differential equations with nonlocal boundary conditions},
url = {http://eudml.org/doc/276990},
volume = {141},
year = {2016},
}
TY - JOUR
AU - Mawhin, Jean
AU - Szymańska-Dębowska, Katarzyna
TI - Couples of lower and upper slopes and resonant second order ordinary differential equations with nonlocal boundary conditions
JO - Mathematica Bohemica
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 141
IS - 2
SP - 239
EP - 259
AB - A couple ($\sigma ,\tau $) of lower and upper slopes for the resonant second order boundary value problem \[ x^{\prime \prime } = f(t,x,x^{\prime }), \quad x(0) = 0,\quad x^{\prime }(1) = \int _0^1 x^{\prime }(s) {\rm d}g(s), \]
with $g$ increasing on $[0,1]$ such that $\int _0^1 dg = 1$, is a couple of functions $\sigma , \tau \in C^1([0,1])$ such that $\sigma (t) \le \tau (t)$ for all $t \in [0,1]$, \begin{gather} \sigma ^{\prime }(t) \ge f(t,x,\sigma (t)), \quad \sigma (1) \le \int _0^1 \sigma (s) {\rm d}g(s),\nonumber \\ \tau ^{\prime }(t) \le f(t,x,\tau (t)), \quad \tau (1) \ge \int _0^1 \tau (s) {\rm d}g(s),\nonumber \end{gather}
in the stripe $\int _0^t\sigma (s) {\rm d}s \le x \le \int _0^t \tau (s) {\rm d}s$ and $t \in [0,1]$. It is proved that the existence of such a couple $(\sigma ,\tau )$ implies the existence and localization of a solution to the boundary value problem. Multiplicity results are also obtained.
LA - eng
KW - nonlocal boundary value problem; lower solution; upper solution; lower slope; upper slope; Leray-Schauder degree
UR - http://eudml.org/doc/276990
ER -
References
top- Amann, H., 10.1016/0022-1236(72)90074-2, J. Funct. Anal. 11 (1972), 346-384. (1972) Zbl0244.47046MR0358470DOI10.1016/0022-1236(72)90074-2
- Amann, H., 10.1512/iumj.1972.21.21074, Indiana Univ. Math. J. 21 (1971/72), 925-935. (1971) MR0320517DOI10.1512/iumj.1972.21.21074
- Benchohra, M., Hamani, S., Nieto, J. J., 10.1216/RMJ-2010-40-1-13, Rocky Mt. J. Math. 40 (2010), 13-26. (2010) Zbl1205.34013MR2607106DOI10.1216/RMJ-2010-40-1-13
- Benchohra, M., Ouahab, A., Upper and lower solutions method for differential inclusions with integral boundary conditions, J. Appl. Math. Stochastic Anal. 2006 (2006), Article ID 10490, 10 pages. (2006) Zbl1122.34006MR2212591
- Cabada, A., Grossinho, M. R., Minhós, F., 10.1016/j.na.2005.04.023, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 62 (2005), 1109-1121. (2005) Zbl1084.34013MR2153000DOI10.1016/j.na.2005.04.023
- Coster, C. De, Habets, P., Two-Point Boundary Value Problems: Lower and Upper Solutions, Mathematics in Science and Engineering 205 Elsevier, Amsterdam (2006). (2006) Zbl1330.34009MR2225284
- Gao, H., Weng, S., Jiang, D., Hou, X., On second order periodic boundary-value problems with upper and lower solutions in the reversed order, Electron. J. Differ. Equ. (electronic only) 2006 (2006), Article No. 25, 8 pages. (2006) Zbl1096.34010MR2212929
- Gupta, C. P., 10.1016/0362-546X(94)00204-U, Nonlinear Anal., Theory Methods Appl. 24 (1995), 1483-1489. (1995) Zbl0839.34027MR1327929DOI10.1016/0362-546X(94)00204-U
- Gupta, C. P., Ntouyas, S. K., Tsamatos, P. C., Existence results for -point boundary value problems, Differ. Equ. Dyn. Syst. 2 (1994), 289-298. (1994) Zbl0877.34019MR1386275
- Gupta, C. P., Trofimchuk, S., 10.1155/S1085337599000093, Abstr. Appl. Anal. 4 (1999), 71-81. (1999) MR1810319DOI10.1155/S1085337599000093
- Karakostas, G. L., Tsamatos, P. C., 10.1006/jmaa.2000.7411, J. Math. Anal. Appl. 259 (2001), 209-218. (2001) Zbl1002.34057MR1836454DOI10.1006/jmaa.2000.7411
- Karakostas, G. L., Tsamatos, P. C., Positive solutions for a nonlocal boundary-value problem with increasing response, Electron. J. Differ. Equ. (electronic only) 2000 (2000), Article No. 73, 8 pages. (2000) Zbl0971.34008MR1801638
- Lian, H., Geng, F., Multiple unbounded solutions for a boundary value problem on infinite intervals, Bound. Value Probl. (electronic only) 2011 (2011), Article ID 51, 8 pages. (2011) Zbl1275.34043MR2891965
- Lin, X., Existence of solutions to a nonlocal boundary value problem with nonlinear growth, Bound. Value Probl. 2011 (2011), ID 416416, 15 pages. (2011) Zbl1213.34029MR2739198
- Pang, H., Lu, M., Cai, C., The method of upper and lower solutions to impulsive differential equations with integral boundary conditions, Adv. Difference Equ. (electronic only) 2014 (2014), Article No. 183, 11 pages. (2014) MR3357338
- Rachůnková, I., 10.1006/jmaa.2000.6798, J. Math. Anal. Appl. 246 446-464 (2000). (2000) Zbl0961.34004MR1761941DOI10.1006/jmaa.2000.6798
- Rachůnková, I., 10.1006/jmaa.1999.6375, J. Math. Anal. Appl. 234 (1999), 311-327. (1999) MR1694813DOI10.1006/jmaa.1999.6375
- Rachůnková, I., Staněk, S., Tvrdý, M., Solvability of nonlinear singular problems for ordinary differential equations, Contemporary Mathematics and Its Applications 5 Hindawi Publishing Corporation, New York (2008). (2008) Zbl1228.34003MR2572243
- Szymańska-Dębowska, K., 10.1515/ms-2015-0070, Math. Slovaca 65 (2015), 1027-1034. (2015) MR3433052DOI10.1515/ms-2015-0070
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.