Couples of lower and upper slopes and resonant second order ordinary differential equations with nonlocal boundary conditions

Jean Mawhin; Katarzyna Szymańska-Dębowska

Mathematica Bohemica (2016)

  • Volume: 141, Issue: 2, page 239-259
  • ISSN: 0862-7959

Abstract

top
A couple ( σ , τ ) of lower and upper slopes for the resonant second order boundary value problem x ' ' = f ( t , x , x ' ) , x ( 0 ) = 0 , x ' ( 1 ) = 0 1 x ' ( s ) d g ( s ) , with g increasing on [ 0 , 1 ] such that 0 1 d g = 1 , is a couple of functions σ , τ C 1 ( [ 0 , 1 ] ) such that σ ( t ) τ ( t ) for all t [ 0 , 1 ] , σ ' ( t ) f ( t , x , σ ( t ) ) , σ ( 1 ) 0 1 σ ( s ) d g ( s ) , τ ' ( t ) f ( t , x , τ ( t ) ) , τ ( 1 ) 0 1 τ ( s ) d g ( s ) , in the stripe 0 t σ ( s ) d s x 0 t τ ( s ) d s and t [ 0 , 1 ] . It is proved that the existence of such a couple ( σ , τ ) implies the existence and localization of a solution to the boundary value problem. Multiplicity results are also obtained.

How to cite

top

Mawhin, Jean, and Szymańska-Dębowska, Katarzyna. "Couples of lower and upper slopes and resonant second order ordinary differential equations with nonlocal boundary conditions." Mathematica Bohemica 141.2 (2016): 239-259. <http://eudml.org/doc/276990>.

@article{Mawhin2016,
abstract = {A couple ($\sigma ,\tau $) of lower and upper slopes for the resonant second order boundary value problem \[ x^\{\prime \prime \} = f(t,x,x^\{\prime \}), \quad x(0) = 0,\quad x^\{\prime \}(1) = \int \_0^1 x^\{\prime \}(s) \{\rm d\}g(s), \] with $g$ increasing on $[0,1]$ such that $\int _0^1 dg = 1$, is a couple of functions $\sigma , \tau \in C^1([0,1])$ such that $\sigma (t) \le \tau (t)$ for all $t \in [0,1]$, \begin\{gather\} \sigma ^\{\prime \}(t) \ge f(t,x,\sigma (t)), \quad \sigma (1) \le \int \_0^1 \sigma (s) \{\rm d\}g(s),\nonumber \\ \tau ^\{\prime \}(t) \le f(t,x,\tau (t)), \quad \tau (1) \ge \int \_0^1 \tau (s) \{\rm d\}g(s),\nonumber \end\{gather\} in the stripe $\int _0^t\sigma (s) \{\rm d\}s \le x \le \int _0^t \tau (s) \{\rm d\}s$ and $t \in [0,1]$. It is proved that the existence of such a couple $(\sigma ,\tau )$ implies the existence and localization of a solution to the boundary value problem. Multiplicity results are also obtained.},
author = {Mawhin, Jean, Szymańska-Dębowska, Katarzyna},
journal = {Mathematica Bohemica},
keywords = {nonlocal boundary value problem; lower solution; upper solution; lower slope; upper slope; Leray-Schauder degree},
language = {eng},
number = {2},
pages = {239-259},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Couples of lower and upper slopes and resonant second order ordinary differential equations with nonlocal boundary conditions},
url = {http://eudml.org/doc/276990},
volume = {141},
year = {2016},
}

TY - JOUR
AU - Mawhin, Jean
AU - Szymańska-Dębowska, Katarzyna
TI - Couples of lower and upper slopes and resonant second order ordinary differential equations with nonlocal boundary conditions
JO - Mathematica Bohemica
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 141
IS - 2
SP - 239
EP - 259
AB - A couple ($\sigma ,\tau $) of lower and upper slopes for the resonant second order boundary value problem \[ x^{\prime \prime } = f(t,x,x^{\prime }), \quad x(0) = 0,\quad x^{\prime }(1) = \int _0^1 x^{\prime }(s) {\rm d}g(s), \] with $g$ increasing on $[0,1]$ such that $\int _0^1 dg = 1$, is a couple of functions $\sigma , \tau \in C^1([0,1])$ such that $\sigma (t) \le \tau (t)$ for all $t \in [0,1]$, \begin{gather} \sigma ^{\prime }(t) \ge f(t,x,\sigma (t)), \quad \sigma (1) \le \int _0^1 \sigma (s) {\rm d}g(s),\nonumber \\ \tau ^{\prime }(t) \le f(t,x,\tau (t)), \quad \tau (1) \ge \int _0^1 \tau (s) {\rm d}g(s),\nonumber \end{gather} in the stripe $\int _0^t\sigma (s) {\rm d}s \le x \le \int _0^t \tau (s) {\rm d}s$ and $t \in [0,1]$. It is proved that the existence of such a couple $(\sigma ,\tau )$ implies the existence and localization of a solution to the boundary value problem. Multiplicity results are also obtained.
LA - eng
KW - nonlocal boundary value problem; lower solution; upper solution; lower slope; upper slope; Leray-Schauder degree
UR - http://eudml.org/doc/276990
ER -

References

top
  1. Amann, H., 10.1016/0022-1236(72)90074-2, J. Funct. Anal. 11 (1972), 346-384. (1972) Zbl0244.47046MR0358470DOI10.1016/0022-1236(72)90074-2
  2. Amann, H., 10.1512/iumj.1972.21.21074, Indiana Univ. Math. J. 21 (1971/72), 925-935. (1971) MR0320517DOI10.1512/iumj.1972.21.21074
  3. Benchohra, M., Hamani, S., Nieto, J. J., 10.1216/RMJ-2010-40-1-13, Rocky Mt. J. Math. 40 (2010), 13-26. (2010) Zbl1205.34013MR2607106DOI10.1216/RMJ-2010-40-1-13
  4. Benchohra, M., Ouahab, A., Upper and lower solutions method for differential inclusions with integral boundary conditions, J. Appl. Math. Stochastic Anal. 2006 (2006), Article ID 10490, 10 pages. (2006) Zbl1122.34006MR2212591
  5. Cabada, A., Grossinho, M. R., Minhós, F., 10.1016/j.na.2005.04.023, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 62 (2005), 1109-1121. (2005) Zbl1084.34013MR2153000DOI10.1016/j.na.2005.04.023
  6. Coster, C. De, Habets, P., Two-Point Boundary Value Problems: Lower and Upper Solutions, Mathematics in Science and Engineering 205 Elsevier, Amsterdam (2006). (2006) Zbl1330.34009MR2225284
  7. Gao, H., Weng, S., Jiang, D., Hou, X., On second order periodic boundary-value problems with upper and lower solutions in the reversed order, Electron. J. Differ. Equ. (electronic only) 2006 (2006), Article No. 25, 8 pages. (2006) Zbl1096.34010MR2212929
  8. Gupta, C. P., 10.1016/0362-546X(94)00204-U, Nonlinear Anal., Theory Methods Appl. 24 (1995), 1483-1489. (1995) Zbl0839.34027MR1327929DOI10.1016/0362-546X(94)00204-U
  9. Gupta, C. P., Ntouyas, S. K., Tsamatos, P. C., Existence results for m -point boundary value problems, Differ. Equ. Dyn. Syst. 2 (1994), 289-298. (1994) Zbl0877.34019MR1386275
  10. Gupta, C. P., Trofimchuk, S., 10.1155/S1085337599000093, Abstr. Appl. Anal. 4 (1999), 71-81. (1999) MR1810319DOI10.1155/S1085337599000093
  11. Karakostas, G. L., Tsamatos, P. C., 10.1006/jmaa.2000.7411, J. Math. Anal. Appl. 259 (2001), 209-218. (2001) Zbl1002.34057MR1836454DOI10.1006/jmaa.2000.7411
  12. Karakostas, G. L., Tsamatos, P. C., Positive solutions for a nonlocal boundary-value problem with increasing response, Electron. J. Differ. Equ. (electronic only) 2000 (2000), Article No. 73, 8 pages. (2000) Zbl0971.34008MR1801638
  13. Lian, H., Geng, F., Multiple unbounded solutions for a boundary value problem on infinite intervals, Bound. Value Probl. (electronic only) 2011 (2011), Article ID 51, 8 pages. (2011) Zbl1275.34043MR2891965
  14. Lin, X., Existence of solutions to a nonlocal boundary value problem with nonlinear growth, Bound. Value Probl. 2011 (2011), ID 416416, 15 pages. (2011) Zbl1213.34029MR2739198
  15. Pang, H., Lu, M., Cai, C., The method of upper and lower solutions to impulsive differential equations with integral boundary conditions, Adv. Difference Equ. (electronic only) 2014 (2014), Article No. 183, 11 pages. (2014) MR3357338
  16. Rachůnková, I., 10.1006/jmaa.2000.6798, J. Math. Anal. Appl. 246 446-464 (2000). (2000) Zbl0961.34004MR1761941DOI10.1006/jmaa.2000.6798
  17. Rachůnková, I., 10.1006/jmaa.1999.6375, J. Math. Anal. Appl. 234 (1999), 311-327. (1999) MR1694813DOI10.1006/jmaa.1999.6375
  18. Rachůnková, I., Staněk, S., Tvrdý, M., Solvability of nonlinear singular problems for ordinary differential equations, Contemporary Mathematics and Its Applications 5 Hindawi Publishing Corporation, New York (2008). (2008) Zbl1228.34003MR2572243
  19. Szymańska-Dębowska, K., 10.1515/ms-2015-0070, Math. Slovaca 65 (2015), 1027-1034. (2015) MR3433052DOI10.1515/ms-2015-0070

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.