The weak solution of an antiplane contact problem for electro-viscoelastic materials with long-term memory
Ammar Derbazi; Mohamed Dalah; Amar Megrous
Applications of Mathematics (2016)
- Volume: 61, Issue: 3, page 339-358
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topDerbazi, Ammar, Dalah, Mohamed, and Megrous, Amar. "The weak solution of an antiplane contact problem for electro-viscoelastic materials with long-term memory." Applications of Mathematics 61.3 (2016): 339-358. <http://eudml.org/doc/276996>.
@article{Derbazi2016,
abstract = {We study a mathematical model which describes the antiplane shear deformation of a cylinder in frictionless contact with a rigid foundation. The material is assumed to be electro-viscoelastic with long-term memory, and the friction is modeled with Tresca's law and the foundation is assumed to be electrically conductive. First we derive the classical variational formulation of the model which is given by a system coupling an evolutionary variational equality for the displacement field with a time-dependent variational equation for the potential field. Then we prove the existence of a unique weak solution to the model. Moreover, the proof is based on arguments of evolution equations and on the Banach fixed-point theorem.},
author = {Derbazi, Ammar, Dalah, Mohamed, Megrous, Amar},
journal = {Applications of Mathematics},
keywords = {weak solution; variational formulation; antiplane shear deformation; electro-viscoelastic material; Tresca's friction; fixed point; variational inequality; weak solution; variational formulation; antiplane shear deformation; electro-viscoelastic material; Tresca's friction; fixed point; variational inequality},
language = {eng},
number = {3},
pages = {339-358},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The weak solution of an antiplane contact problem for electro-viscoelastic materials with long-term memory},
url = {http://eudml.org/doc/276996},
volume = {61},
year = {2016},
}
TY - JOUR
AU - Derbazi, Ammar
AU - Dalah, Mohamed
AU - Megrous, Amar
TI - The weak solution of an antiplane contact problem for electro-viscoelastic materials with long-term memory
JO - Applications of Mathematics
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 3
SP - 339
EP - 358
AB - We study a mathematical model which describes the antiplane shear deformation of a cylinder in frictionless contact with a rigid foundation. The material is assumed to be electro-viscoelastic with long-term memory, and the friction is modeled with Tresca's law and the foundation is assumed to be electrically conductive. First we derive the classical variational formulation of the model which is given by a system coupling an evolutionary variational equality for the displacement field with a time-dependent variational equation for the potential field. Then we prove the existence of a unique weak solution to the model. Moreover, the proof is based on arguments of evolution equations and on the Banach fixed-point theorem.
LA - eng
KW - weak solution; variational formulation; antiplane shear deformation; electro-viscoelastic material; Tresca's friction; fixed point; variational inequality; weak solution; variational formulation; antiplane shear deformation; electro-viscoelastic material; Tresca's friction; fixed point; variational inequality
UR - http://eudml.org/doc/276996
ER -
References
top- Andreu, F., Mazón, J. M., Sofonea, M., 10.1142/S0218202500000082, Math. Models Methods Appl. Sci. 10 (2000), 99-126. (2000) Zbl1077.74583MR1750246DOI10.1142/S0218202500000082
- Batra, R. C., Yang, J. S., 10.1007/BF00042498, J. Elasticity 38 (1995), 209-218. (1995) Zbl0828.73061MR1336038DOI10.1007/BF00042498
- Bisegna, P., Lebon, F., Maceri, F., The unilateral frictional contact of a piezoelectric body with a rigid support, Contact Mechanics J. A. C. Martins et al. Proc. of the 3rd Contact Mechanics International Symposium, Praia da Consolação, 2001 Solic. Mech. Appl. 103, Kluwer Academic Publishers, Dordrecht (2002), 347-354. (2002) Zbl1053.74583MR1968676
- Borrelli, A., Horgan, C. O., Patria, M. C., 10.1137/S0036139901392506, SIAM J. Appl. Math. 62 (2002), 2027-2044. (2002) Zbl1047.74019MR1918305DOI10.1137/S0036139901392506
- Campillo, M., Dascalu, C., Ionescu, I. R., 10.1111/j.1365-246X.2004.02365.x, Geophys. J. Int. 159 (2004), 212-222. (2004) DOI10.1111/j.1365-246X.2004.02365.x
- Campillo, M., Ionescu, I. R., 10.1029/97JB01508, J. Geophys. Res. 102 (1997), 363-371. (1997) DOI10.1029/97JB01508
- Denkowski, Z., Migórski, S., Ochal, A., A class of optimal control problems for piezoelectric frictional contact models, Nonlinear Anal., Real World Appl. 12 (2011), 1883-1895. (2011) Zbl1217.49008MR2781904
- Hoarau-Mantel, T.-V., Matei, A., Analysis of a viscoelastic antiplane contact problem with slip-dependent friction, Int. J. Appl. Math. Comput. Sci. 12 (2002), 51-58. (2002) Zbl1038.74032MR1905993
- Horgan, C. O., 10.1137/1037003, SIAM Rev. 37 (1995), 53-81. (1995) Zbl0824.73018MR1327716DOI10.1137/1037003
- Horgan, C. O., 10.1115/1.3101961, Appl. Mech. Rev. 49 (1996), 101-111. (1996) DOI10.1115/1.3101961
- Horgan, C. O., Miller, K. L., 10.1115/1.2901416, J. Appl. Mech. 61 (1994), 23-29. (1994) Zbl0809.73016MR1266833DOI10.1115/1.2901416
- Ikeda, T., Fundamentals of Piezoelectricity, Oxford University Press, Oxford (1990). (1990)
- Ionescu, I. R., Dascalu, Ch., Campillo, M., 10.1007/PL00012624, Z. Angew. Math. Phys. 53 (2002), 980-995. (2002) Zbl1014.35068MR1963548DOI10.1007/PL00012624
- Ionescu, I. R., Wolf, S., 10.1002/mma.550, Math. Methods Appl. Sci. 28 (2005), 77-100. (2005) Zbl1062.86006MR2105794DOI10.1002/mma.550
- Lerguet, Z., Shillor, M., Sofonea, M., A frictional contact problem for an electro-viscoelastic body, Electron. J. Differ. Equ. (electronic only) 2007 (2007), 16 pages. (2007) Zbl1139.74041MR2366063
- Maceri, F., Bisegna, P., 10.1016/S0895-7177(98)00105-8, Math. Comput. Modelling 28 (1998), 19-28. (1998) Zbl1126.74392MR1616376DOI10.1016/S0895-7177(98)00105-8
- Matei, A., Motreanu, V. V., Sofonea, M., A quasistatic antiplane contact problem with slip dependent friction, Adv. Nonlinear Var. Inequal. 4 (2001), 1-21. (2001) Zbl1205.74132MR1830622
- Migórski, S., 10.3934/dcdsb.2006.6.1339, Discrete Contin. Dyn. Syst., Ser. B 6 (2006), 1339-1356. (2006) Zbl1109.74039MR2240746DOI10.3934/dcdsb.2006.6.1339
- Migórski, S., Ochal, A., Sofonea, M., 10.1142/S0218202509003796, Math. Models Methods Appl. Sci. 19 (2009), 1295-1324. (2009) MR2555472DOI10.1142/S0218202509003796
- Migórski, S., Ochal, A., Sofonea, M., 10.1016/j.na.2008.07.029, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 70 (2009), 3738-3748. (2009) Zbl1159.74026MR2504461DOI10.1016/j.na.2008.07.029
- Migórski, S., Ochal, A., Sofonea, M., Weak solvability of antiplane frictional contact problems for elastic cylinders, Nonlinear Anal., Real World Appl. 11 (2010), 172-183. (2010) Zbl1241.74029MR2570537
- Migórski, S., Ochal, A., Sofonea, M., 10.1017/S0308210513000607, Proc. R. Soc. Edinb., Sect. A, Math. 144 (2014), 1007-1025. (2014) Zbl1306.49014MR3265542DOI10.1017/S0308210513000607
- Patron, V. Z., Kudryavtsev, B. A., Electromagnetoelasticity, Piezoelectrics and Electrically Conductive Solids, Gordon & Breach, London (1988). (1988)
- Sofonea, M., Dalah, M., Ayadi, A., Analysis of an antiplane electro-elastic contact problem, Adv. Math. Sci. Appl. 17 (2007), 385-400. (2007) Zbl1131.74036MR2374134
- Sofonea, M., Essoufi, El H., Quasistatic frictional contact of a viscoelastic piezoelectric body, Adv. Math. Sci. Appl. 14 (2004), 613-631. (2004) Zbl1078.74036MR2111832
- Sofonea, M., Niculescu, C. P., Matei, A., 10.3846/13926292.2006.9637314, Math. Model. Anal. 11 (2006), 213-228. (2006) Zbl1104.74049MR2231211DOI10.3846/13926292.2006.9637314
- Zhou, Z.-G., Wang, B., Du, S.-Y., 10.1115/1.1445144, J. Appl. Mech. 69 (2002), 388-390. (2002) Zbl1110.74805DOI10.1115/1.1445144
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.