Bayesian and generalized confidence intervals on variance ratio and on the variance component in mixed linear models
Discussiones Mathematicae Probability and Statistics (2009)
- Volume: 29, Issue: 1, page 5-29
- ISSN: 1509-9423
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] B. Arendacká, Generalized confidence intervals on the variance component in mixed linear models with two variance components, Statistics 39 (4) (2005), 275-286. Zbl1084.62028
- [2] R.K. Burdick and F.A. Graybill, Confidence intervals on variance components, Marcel Dekker, Inc., New York, Basel, Hong Kong 1992. Zbl0755.62055
- [3] R.B. Davies, The distribution of a linear combination of χ² random variables, Applied Statistics 29 (1980), 323-333. Zbl0473.62025
- [4] S. Gnot, Bayes estimation in linear models: A cordinate - free approach, J. Mulivariate Anal. 13 (1983), 40-51. Zbl0511.62037
- [5] S. Gnot and J. Kleffe, Quadratic estimation in mixed linear models with two variance components, J. Statist. Plann. Inference 8 (1983), 267-279. Zbl0561.62064
- [6] S. Gnot, Estimation of variance components in linear models. Theory and applications, WNT, Warszawa 1991 (in Polish). Zbl0567.62057
- [7] S. Gnot and A. Michalski, Tests based on admissible estimators in two variance components models, Statistics 25 (1994), 213-223. Zbl0816.62019
- [8] J.P. Imhof, Computing the distribution of quadratic forms in normal variables, Biometrika 48 (1961), 419-426. Zbl0136.41103
- [9] A.I. Khuri, T. Mathew and B.K. Sinha, Statistical Tests for Mixed Linear Models, Wiley & Sons, New York, Toronto 1998. Zbl0893.62009
- [10] A. Michalski, Confidence intervals on the variance ratio in two variance components models, Discussiones Mathematicae - Algebra and Stochastic Methods 15 (1995), 179-188. Zbl0842.62019
- [11] A. Michalski and R. Zmyślony, Testing hypotheses for variance components in mixed linear models, Statistics 27 (1996), 297-310. Zbl0842.62059
- [12] A. Olsen, J. Seely and D. Birkes, Invariant quadratic unbiased estimation for two variance components, Ann. Statist. 4 (1976), 878-890. Zbl0344.62060
- [13] J. Seely, Minimal sufficient statistics and completeness for multivariate normal families, Sankhyā A 39 (1977), 170-185. Zbl0409.62004
- [14] J. Seely and Y. El-Bassiouni, Applying Wald's variance components test, Ann. Statist. 11 (1983), 197-201. Zbl0516.62028
- [15] K.W. Tsui and S. Weerahandi, Generalized P-values in significance testing of hypotheses in the presence of nuisance parameters, J. Amer. Statist. Assoc. 84 (1989), 602-607.
- [16] S. Weerahandi, Testing variance components in mixed linear models with generalized P-values, J. Amer. Statist. Assoc. 86 (1991), 151-153.
- [17] S. Weerahandi, Generalized confidence intervals, J. Amer. Statist. Assoc. 88 (1993), 899-905. Zbl0785.62029
- [18] S. Weerahandi, Exact Statistical Methods for Data Analysis, Springer-Verlag, New York 1995. Zbl0912.62002
- [19] L. Zhou and T. Mathew, Some tests for variance components using generalized p-values, Technometrics 36 (1994), 394-402. Zbl0825.62603