Inverting covariance matrices

Czesław Stępniak

Discussiones Mathematicae Probability and Statistics (2006)

  • Volume: 26, Issue: 2, page 163-177
  • ISSN: 1509-9423

Abstract

top
Some useful tools in modelling linear experiments with general multi-way classification of the random effects and some convenient forms of the covariance matrix and its inverse are presented. Moreover, the Sherman-Morrison-Woodbury formula is applied for inverting the covariance matrix in such experiments.

How to cite

top

Czesław Stępniak. "Inverting covariance matrices." Discussiones Mathematicae Probability and Statistics 26.2 (2006): 163-177. <http://eudml.org/doc/277048>.

@article{CzesławStępniak2006,
abstract = {Some useful tools in modelling linear experiments with general multi-way classification of the random effects and some convenient forms of the covariance matrix and its inverse are presented. Moreover, the Sherman-Morrison-Woodbury formula is applied for inverting the covariance matrix in such experiments.},
author = {Czesław Stępniak},
journal = {Discussiones Mathematicae Probability and Statistics},
keywords = {multi-way classification; cross; hierarchical; balanced; unbalanced; covariance matrix; inverting; linear experiments; Sherman-Morrison-Woodbury formula},
language = {eng},
number = {2},
pages = {163-177},
title = {Inverting covariance matrices},
url = {http://eudml.org/doc/277048},
volume = {26},
year = {2006},
}

TY - JOUR
AU - Czesław Stępniak
TI - Inverting covariance matrices
JO - Discussiones Mathematicae Probability and Statistics
PY - 2006
VL - 26
IS - 2
SP - 163
EP - 177
AB - Some useful tools in modelling linear experiments with general multi-way classification of the random effects and some convenient forms of the covariance matrix and its inverse are presented. Moreover, the Sherman-Morrison-Woodbury formula is applied for inverting the covariance matrix in such experiments.
LA - eng
KW - multi-way classification; cross; hierarchical; balanced; unbalanced; covariance matrix; inverting; linear experiments; Sherman-Morrison-Woodbury formula
UR - http://eudml.org/doc/277048
ER -

References

top
  1. [1] G.H. Golub and C.F. Van Loan, Matrix Computation, Sec. Edition, J. Hopkins Univ. Press, Baltimore 1989. 
  2. [2] F.A. Graybill, Matrices with Application in Statistics, Sec. Edition, Wadsworth, Belmont, CA 1983. Zbl0496.15002
  3. [3] R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge Univ. Press, Cambridge 1985. Zbl0576.15001
  4. [4] J. Jiang, Dispersion matrix in balanced mixed ANOVA models, Linear Algebra Appl. 382 (2004), 211-219. Zbl1041.62057
  5. [5] J. Kleffe and B. Seifert, Computation of variance components by MINQUE method, J. Multivariate Anal. 18 (1986), 107-116. Zbl0583.62068
  6. [6] L.R. LaMotte, Notes on the covariance matrix of a random nested ANOVA model, Ann. Math. Statist. 43 (1972), 659-662. Zbl0261.62053
  7. [7] C.R. Rao, Linear Statistical Inference and Its Applications, Sec. Edition, J. Wiley, New York 1973. Zbl0256.62002
  8. [8] S.R. Searle, G. Casella and C. McCulloch, Variance Components, J. Wiley, New York 1992. 
  9. [9] J. Seely, Quadratic subspaces and completeness, Ann. Math. Statist. 42 (1971), 710-721. Zbl0249.62067
  10. [10] C. Stępniak, A note on estimation of parameters in linear models, Bull. Acad. Polon. Sc. Math., Astr. et Phys. 22 (1974), 1151-1154. Zbl0298.62019
  11. [11] C. Stępniak, Optimal allocation of units in experimental designs with hierarchical and cross classification, Ann. Inst. Statist. Math. A 35 (1983), 461-473. Zbl0553.62065
  12. [12] C. Stępniak, Inversion of covariance matrices: explicit formulae, SIAM J. Matrix Anal. Appl. 12 (1991), 577-580. Zbl0734.15006
  13. [13] C. Stępniak and M. Niezgoda, Inverting covariance matrices in unbalanced hierarchical models, J. Statist. Comput. Simul. 51 (1995), 215-221. Zbl0842.62050
  14. [14] D.M. VanLeeuwen, D.S. Birkes and J.F. Seely, Balance and orthogonality in designs for mixed classification models, Ann. Statist. 2 (1999), 1927-1947. Zbl0963.62059
  15. [15] R. Zmyślony and H. Drygas, Jordan algebras and Bayesian quadratic estimation of variance components, Linear Algebra Appl. 168 (1992), 259-275. Zbl0760.62068

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.