Inverting covariance matrices
Discussiones Mathematicae Probability and Statistics (2006)
- Volume: 26, Issue: 2, page 163-177
- ISSN: 1509-9423
Access Full Article
topAbstract
topHow to cite
topCzesław Stępniak. "Inverting covariance matrices." Discussiones Mathematicae Probability and Statistics 26.2 (2006): 163-177. <http://eudml.org/doc/277048>.
@article{CzesławStępniak2006,
abstract = {Some useful tools in modelling linear experiments with general multi-way classification of the random effects and some convenient forms of the covariance matrix and its inverse are presented. Moreover, the Sherman-Morrison-Woodbury formula is applied for inverting the covariance matrix in such experiments.},
author = {Czesław Stępniak},
journal = {Discussiones Mathematicae Probability and Statistics},
keywords = {multi-way classification; cross; hierarchical; balanced; unbalanced; covariance matrix; inverting; linear experiments; Sherman-Morrison-Woodbury formula},
language = {eng},
number = {2},
pages = {163-177},
title = {Inverting covariance matrices},
url = {http://eudml.org/doc/277048},
volume = {26},
year = {2006},
}
TY - JOUR
AU - Czesław Stępniak
TI - Inverting covariance matrices
JO - Discussiones Mathematicae Probability and Statistics
PY - 2006
VL - 26
IS - 2
SP - 163
EP - 177
AB - Some useful tools in modelling linear experiments with general multi-way classification of the random effects and some convenient forms of the covariance matrix and its inverse are presented. Moreover, the Sherman-Morrison-Woodbury formula is applied for inverting the covariance matrix in such experiments.
LA - eng
KW - multi-way classification; cross; hierarchical; balanced; unbalanced; covariance matrix; inverting; linear experiments; Sherman-Morrison-Woodbury formula
UR - http://eudml.org/doc/277048
ER -
References
top- [1] G.H. Golub and C.F. Van Loan, Matrix Computation, Sec. Edition, J. Hopkins Univ. Press, Baltimore 1989.
- [2] F.A. Graybill, Matrices with Application in Statistics, Sec. Edition, Wadsworth, Belmont, CA 1983. Zbl0496.15002
- [3] R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge Univ. Press, Cambridge 1985. Zbl0576.15001
- [4] J. Jiang, Dispersion matrix in balanced mixed ANOVA models, Linear Algebra Appl. 382 (2004), 211-219. Zbl1041.62057
- [5] J. Kleffe and B. Seifert, Computation of variance components by MINQUE method, J. Multivariate Anal. 18 (1986), 107-116. Zbl0583.62068
- [6] L.R. LaMotte, Notes on the covariance matrix of a random nested ANOVA model, Ann. Math. Statist. 43 (1972), 659-662. Zbl0261.62053
- [7] C.R. Rao, Linear Statistical Inference and Its Applications, Sec. Edition, J. Wiley, New York 1973. Zbl0256.62002
- [8] S.R. Searle, G. Casella and C. McCulloch, Variance Components, J. Wiley, New York 1992.
- [9] J. Seely, Quadratic subspaces and completeness, Ann. Math. Statist. 42 (1971), 710-721. Zbl0249.62067
- [10] C. Stępniak, A note on estimation of parameters in linear models, Bull. Acad. Polon. Sc. Math., Astr. et Phys. 22 (1974), 1151-1154. Zbl0298.62019
- [11] C. Stępniak, Optimal allocation of units in experimental designs with hierarchical and cross classification, Ann. Inst. Statist. Math. A 35 (1983), 461-473. Zbl0553.62065
- [12] C. Stępniak, Inversion of covariance matrices: explicit formulae, SIAM J. Matrix Anal. Appl. 12 (1991), 577-580. Zbl0734.15006
- [13] C. Stępniak and M. Niezgoda, Inverting covariance matrices in unbalanced hierarchical models, J. Statist. Comput. Simul. 51 (1995), 215-221. Zbl0842.62050
- [14] D.M. VanLeeuwen, D.S. Birkes and J.F. Seely, Balance and orthogonality in designs for mixed classification models, Ann. Statist. 2 (1999), 1927-1947. Zbl0963.62059
- [15] R. Zmyślony and H. Drygas, Jordan algebras and Bayesian quadratic estimation of variance components, Linear Algebra Appl. 168 (1992), 259-275. Zbl0760.62068
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.