Sensitivity analysis in linear models
Shuangzhe Liu; Tiefeng Ma; Yonghui Liu
Special Matrices (2016)
- Volume: 4, Issue: 1, page 225-232
- ISSN: 2300-7451
Access Full Article
topAbstract
topHow to cite
topShuangzhe Liu, Tiefeng Ma, and Yonghui Liu. "Sensitivity analysis in linear models." Special Matrices 4.1 (2016): 225-232. <http://eudml.org/doc/277081>.
@article{ShuangzheLiu2016,
abstract = {In this work, we consider the general linear model or its variants with the ordinary least squares, generalised least squares or restricted least squares estimators of the regression coefficients and variance. We propose a newly unified set of definitions for local sensitivity for both situations, one for the estimators of the regression coefficients, and the other for the estimators of the variance. Based on these definitions, we present the estimators’ sensitivity results.We include brief remarks on possible links of these definitions and sensitivity results to local influence and other existing results.},
author = {Shuangzhe Liu, Tiefeng Ma, Yonghui Liu},
journal = {Special Matrices},
keywords = {elliptical distribution; least squares; maximum likelihood; mixed estimation; sensitivity matrix},
language = {eng},
number = {1},
pages = {225-232},
title = {Sensitivity analysis in linear models},
url = {http://eudml.org/doc/277081},
volume = {4},
year = {2016},
}
TY - JOUR
AU - Shuangzhe Liu
AU - Tiefeng Ma
AU - Yonghui Liu
TI - Sensitivity analysis in linear models
JO - Special Matrices
PY - 2016
VL - 4
IS - 1
SP - 225
EP - 232
AB - In this work, we consider the general linear model or its variants with the ordinary least squares, generalised least squares or restricted least squares estimators of the regression coefficients and variance. We propose a newly unified set of definitions for local sensitivity for both situations, one for the estimators of the regression coefficients, and the other for the estimators of the variance. Based on these definitions, we present the estimators’ sensitivity results.We include brief remarks on possible links of these definitions and sensitivity results to local influence and other existing results.
LA - eng
KW - elliptical distribution; least squares; maximum likelihood; mixed estimation; sensitivity matrix
UR - http://eudml.org/doc/277081
ER -
References
top- [1] A. N. Banerjee, J. R. Magnus, The sensitivity of OLS when the variance matrix is (partially) unknown, J. Econometrics 92, 295–323 (1999) [Crossref] Zbl0951.62050
- [2] R. D. Cook, Influential observations in linear regression, J. Amer. Statist. Assoc. 74, 169–74 (1979) [Crossref] Zbl0398.62057
- [3] R. D. Cook, Assessment of local influence (with discussion), J. Royal Statist. Soc. Ser. B 48, 133-169 (1986) Zbl0608.62041
- [4] K. T. Fang, S. Kotz, S., K. W. Ng, Symmetric Multivariate and Related Distributions (Chapman, London, 1990) Zbl0699.62048
- [5] K. T. Fang, Y. T. Zhang, Generalized Multivariate Analysis (Springer, Berlin, 1990) Zbl0724.62054
- [6] M. H. J. Gruber, Regression Estimators: A Comparative Study (John Hopkins University Press, Baltimore, MD, 2010) Zbl1216.62100
- [7] C. Hao, D. von Rosen, T. von Rosen, Explicit influence analysis in two-treatment balanced crossover models,Math. Methods Statist., 24, 16-36 (2015) [Crossref] Zbl1328.62418
- [8] T. Kollo, D. von Rosen, Advanced Multivariate Statistics with Matrices (Springer, Dordrecht, 2005) Zbl1079.62059
- [9] V. Leiva, S. Liu, L. Shi, F. J. A. Cysneiros, Diagnostics in elliptical regression models with stochastic restrictions applied to econometrics, J. Appl. Statist. (2016) [Crossref]
- [10] S. Liu, Contributions to Matrix Calculus and Applications in Econometrics (Thesis Publishers, Amsterdam, 1995)
- [11] S. Liu, S. E. Ahmed, L. Y.Ma, Influence diagnostics in the linear regression modelwith linear stochastic restrictions, Pakistan J. Statist. 25, 647-662 (2009)
- [12] S. Liu, T. Ma, W. Polasek, Spatial system estimators for panel models: a sensitivity and simulation study, Math. Comput. Simul. 101, 78-102 (2014) [Crossref][WoS]
- [13] S. Liu, H. Neudecker, Local sensitivity of the restricted least squares estimator in the linear model, Statist. Pap. 48, 525 (2007)
- [14] S. Liu, W. Polasek, R. Sneller, Sensitivity analysis of SAR estimators: a numerical approximation, J. Statist. Comput. Simul. 82(2), 325-342 (2012) [Crossref] Zbl06154792
- [15] Y. Liu, G. Ji, S. Liu, Influence diagnostics in a vector autoregressive model, J. Statist. Comput. Simul. 85(13), 2632-2655 (2015) [Crossref]
- [16] J. R.Magnus, H. Neudecker,Matrix Differential Calculus with Applications in Statistics and Econometrics (Wiley, Chichester, 1999) Zbl0912.15003
- [17] J. R. Magnus, A. L. Vasnev, Local sensitivity and diagnostic tests, Econometrics J. 10(1), 166-192 (2007) Zbl1116.62078
- [18] J. X. Pan, , K. T. Fang, D. von Rosen, Local influence assessment in the growth curve model with unstructured covariance, J. Statist. Plann. Inference 62, 263-278 (1997) [Crossref] Zbl0917.62053
- [19] W. Polasek, Regression diagnostics for general linear regression models, J. Amer. Statist. Assoc. 79, 336-340 (1984) [Crossref] Zbl0581.62054
- [20] W. Polasek, Local sensitivity analysis and Bayesian regression diagnostics, In P. K. Goel, A. Zellner, (Ed.), Bayesian Inference and Decision Techniques (North-Holland, Amsterdam, (1986) 375-387
- [21] S. Puntanen, G. P. H. Styan, J. Isotalo,Matrix Tricks for Linear Statistical Models – Our Personal Top Twenty (Springer, Berlin, 2011) Zbl1291.62014
- [22] C. R. Rao, H. Toutenburg, Shalabh, C. Heumann, Linear Models and Generalizations (Springer, Berlin, 2008) Zbl1151.62063
- [23] B. Schaffrin, H. Toutenburg, Weighted mixed regression, ZAMM J. Appl. Math. Mech./Zeit. Angew. Math. Mech. 70, 735-738 (1990) Zbl0714.62061
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.