Displaying similar documents to “Sensitivity analysis in linear models”

Consistency of linear and quadratic least squares estimators in regression models with covariance stationary errors

František Štulajter (1991)

Applications of Mathematics

Similarity:

The least squres invariant quadratic estimator of an unknown covariance function of a stochastic process is defined and a sufficient condition for consistency of this estimator is derived. The mean value of the observed process is assumed to fulfil a linear regresion model. A sufficient condition for consistency of the least squares estimator of the regression parameters is derived, too.

Redescending M-estimators in regression analysis, cluster analysis and image analysis

Christine H. Müller (2004)

Discussiones Mathematicae Probability and Statistics

Similarity:

We give a review on the properties and applications of M-estimators with redescending score function. For regression analysis, some of these redescending M-estimators can attain the maximum breakdown point which is possible in this setup. Moreover, some of them are the solutions of the problem of maximizing the efficiency under bounded influence function when the regression coefficient and the scale parameter are estimated simultaneously. Hence redescending M-estimators satisfy several...

Adaptive trimmed likelihood estimation in regression

Tadeusz Bednarski, Brenton R. Clarke, Daniel Schubert (2010)

Discussiones Mathematicae Probability and Statistics

Similarity:

In this paper we derive an asymptotic normality result for an adaptive trimmed likelihood estimator of regression starting from initial high breakdownpoint robust regression estimates. The approach leads to quickly and easily computed robust and efficient estimates for regression. A highlight of the method is that it tends automatically in one algorithm to expose the outliers and give least squares estimates with the outliers removed. The idea is to begin with a rapidly computed consistent...