An introduction to Rota’s universal operators: properties, old and new examples and future issues
Carl C. Cowen; Eva A. Gallardo-Gutiérrez
Concrete Operators (2016)
- Volume: 3, Issue: 1, page 43-51
- ISSN: 2299-3282
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] A. Beurling, On two problems concerning linear transformations in Hilbert space, Acta Math. 81(1949), 239–255. Zbl0033.37701
- [2] S. R. Caradus, Universal operators and invariant subspaces, Proc. Amer. Math. Soc. 23(1969), 526–527. Zbl0186.19204
- [3] I. Chalendar and J. R. Partington, Modern Approaches to the Invariant Subspace Problem, Cambridge University Press, 2011. Zbl1231.47005
- [4] C. C. Cowen, The commutant of an analytic Toeplitz operator, Trans. Amer. Math. Soc. 239(1978), 1–31. Zbl0391.47014
- [5] C. C. Cowen, The commutant of an analytic Toeplitz operator, II, Indiana Math. J. 29(1980), 1–12. Zbl0408.47024
- [6] C. C. Cowen, An analytic Toeplitz operator that commutes with a compact operator and a related class of Toeplitz operators, J. Functional Analysis 36(1980), 169–184. Zbl0438.47029
- [7] C. C. Cowen and E. A. Gallardo-Gutiérrez, Unitary equivalence of one-parameter groups of Toeplitz and composition operators, J. Functional Analysis 261(2011), 2641–2655. Zbl1242.47022
- [8] C. C. Cowen and E. A. Gallardo-Gutiérrez, Rota’s universal operators and invariant subspaces in Hilbert spaces, to appear.
- [9] C. C. Cowen and E. A. Gallardo-Gutiérrez, Consequences of Universality Among Toeplitz Operators, J. Math. Anal. Appl. 432(2015), 484–503.
- [10] R. G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1972. Zbl0247.47001
- [11] R. G. Douglas, H. S. Shapiro, and A. L. Shields, Cyclic vectors and invariant subspaces for the backward shift operator, Ann. Inst. Fourier (Grenoble) 20(1970), 37–76. Zbl0186.45302
- [12] P. L. Duren Theory of Hp Spaces, Academic Press, New York, 1970; reprinted with supplement by Dover Publications, Mineola, N˙Y ˙ , 2000.
- [13] Enflo, P., On the invariant subspace problem in Banach spaces, Acta Math. 158(1987), 213–313. Zbl0663.47003
- [14] E. A. Gallardo-Gutiérrez and P. Gorkin, Minimal invariant subspaces for composition operators, J. Math. Pure Appl. 95(2011), 245–259. Zbl1213.47007
- [15] D. W. Hadwin, E. A. Nordgren, H. Radjavi and P. Rosenthal, An operator not satisfying Lomonosov hypotheses, J. Functional Analysis 38(1980), 410–415. Zbl0451.47003
- [16] K. Hoffman, Banach spaces of analytic functions, Dover Publication, Inc., 1988. Zbl0734.46033
- [17] V. Lomonosov, On invariant subspaces of families of operators commuting with a completely continuous operator, Funkcional Anal. i Prilozen 7(1973) 55-56 (Russian).
- [18] B. Sz-Nagy and C. Foias, Harmonic Analysis of Operators on Hilbert Space, North-Holland Publishing Co., 1970. Zbl0201.45003
- [19] N. K. Nikolski, Operators, Functions, and Systems: An Easy Reading, Volume 1: Hardy, Hankel and Toeplitz, Mathematical Surveys and Monographs 92, American Mathematical Society, 2002.
- [20] N. K. Nikolski, Personal communication.
- [21] E. A. Nordgren, P. Rosenthal, and F. S. Wintrobe, Composition operators and the invariant subspace problem, C. R. Mat. Rep. Acad. Sci. Canada, 6(1984), 279–282. Zbl0599.47041
- [22] E. A. Nordgren, P. Rosenthal, and F. S. Wintrobe, Invertible composition operators on Hp, J. Functional Analysis 73(1987), 324– 344. Zbl0643.47034
- [23] J. R. Partington and E. Pozzi, Universal shifts and composition operators, Oper. Matrices 5(2015), 455–467. Zbl1244.47007
- [24] H. Radjavi and P. Rosenthal, Invariant subspaces, Springer-Verlag, New York, 1973.
- [25] Read, C. J., A solution to the invariant subspace problem on the space `1, Bull. London Math. Soc. 17(1985), 305–317. Zbl0574.47006
- [26] Read, C. J., The invariant subspace problem for a class of Banach spaces. II. Hypercyclic operators, Israel J. Math. 63(1988), 1–40. Zbl0782.47002
- [27] G.-C. Rota, On models for linear operators, Comm. Pure Appl. Math. 13(1960), 469–472. Zbl0097.31604