On annihilators in BL-algebras

Yu Xi Zou; Xiao Long Xin; Peng Fei He

Open Mathematics (2016)

  • Volume: 14, Issue: 1, page 324-337
  • ISSN: 2391-5455

Abstract

top
In the paper, we introduce the notion of annihilators in BL-algebras and investigate some related properties of them. We get that the ideal lattice (I(L), ⊆) is pseudo-complemented, and for any ideal I, its pseudo-complement is the annihilator I⊥ of I. Also, we define the An (L) to be the set of all annihilators of L, then we have that (An(L); ⋂,∧An(L),⊥,0, L) is a Boolean algebra. In addition, we introduce the annihilators of a nonempty subset X of L with respect to an ideal I and study some properties of them. As an application, we show that if I and J are ideals in a BL-algebra L, then [...] JI⊥ J I is the relative pseudo-complement of J with respect to I in the ideal lattice (I(L), ⊆). Moreover, we get some properties of the homomorphism image of annihilators, and also give the necessary and sufficient condition of the homomorphism image and the homomorphism pre-image of an annihilator to be an annihilator. Finally, we introduce the notion of α-ideal and give a notation E(I ). We show that (E(I(L)), ∧E, ∨E, E(0), E(L) is a pseudo-complemented lattice, a complete Brouwerian lattice and an algebraic lattice, when L is a BL-chain or a finite product of BL-chains.

How to cite

top

Yu Xi Zou, Xiao Long Xin, and Peng Fei He. "On annihilators in BL-algebras." Open Mathematics 14.1 (2016): 324-337. <http://eudml.org/doc/277099>.

@article{YuXiZou2016,
abstract = {In the paper, we introduce the notion of annihilators in BL-algebras and investigate some related properties of them. We get that the ideal lattice (I(L), ⊆) is pseudo-complemented, and for any ideal I, its pseudo-complement is the annihilator I⊥ of I. Also, we define the An (L) to be the set of all annihilators of L, then we have that (An(L); ⋂,∧An(L),⊥,0, L) is a Boolean algebra. In addition, we introduce the annihilators of a nonempty subset X of L with respect to an ideal I and study some properties of them. As an application, we show that if I and J are ideals in a BL-algebra L, then [...] JI⊥$J_I^ \bot $ is the relative pseudo-complement of J with respect to I in the ideal lattice (I(L), ⊆). Moreover, we get some properties of the homomorphism image of annihilators, and also give the necessary and sufficient condition of the homomorphism image and the homomorphism pre-image of an annihilator to be an annihilator. Finally, we introduce the notion of α-ideal and give a notation E(I ). We show that (E(I(L)), ∧E, ∨E, E(0), E(L) is a pseudo-complemented lattice, a complete Brouwerian lattice and an algebraic lattice, when L is a BL-chain or a finite product of BL-chains.},
author = {Yu Xi Zou, Xiao Long Xin, Peng Fei He},
journal = {Open Mathematics},
keywords = {BL-algebra; MV-algebra; Ideal; Annihilator; Homomorphism; ideal; annihilator; homomorphism},
language = {eng},
number = {1},
pages = {324-337},
title = {On annihilators in BL-algebras},
url = {http://eudml.org/doc/277099},
volume = {14},
year = {2016},
}

TY - JOUR
AU - Yu Xi Zou
AU - Xiao Long Xin
AU - Peng Fei He
TI - On annihilators in BL-algebras
JO - Open Mathematics
PY - 2016
VL - 14
IS - 1
SP - 324
EP - 337
AB - In the paper, we introduce the notion of annihilators in BL-algebras and investigate some related properties of them. We get that the ideal lattice (I(L), ⊆) is pseudo-complemented, and for any ideal I, its pseudo-complement is the annihilator I⊥ of I. Also, we define the An (L) to be the set of all annihilators of L, then we have that (An(L); ⋂,∧An(L),⊥,0, L) is a Boolean algebra. In addition, we introduce the annihilators of a nonempty subset X of L with respect to an ideal I and study some properties of them. As an application, we show that if I and J are ideals in a BL-algebra L, then [...] JI⊥$J_I^ \bot $ is the relative pseudo-complement of J with respect to I in the ideal lattice (I(L), ⊆). Moreover, we get some properties of the homomorphism image of annihilators, and also give the necessary and sufficient condition of the homomorphism image and the homomorphism pre-image of an annihilator to be an annihilator. Finally, we introduce the notion of α-ideal and give a notation E(I ). We show that (E(I(L)), ∧E, ∨E, E(0), E(L) is a pseudo-complemented lattice, a complete Brouwerian lattice and an algebraic lattice, when L is a BL-chain or a finite product of BL-chains.
LA - eng
KW - BL-algebra; MV-algebra; Ideal; Annihilator; Homomorphism; ideal; annihilator; homomorphism
UR - http://eudml.org/doc/277099
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.