Relative co-annihilators in lattice equality algebras

Sogol Niazian; Mona Aaly Kologani; Rajab Ali Borzooei

Mathematica Bohemica (2024)

  • Volume: 149, Issue: 4, page 585-602
  • ISSN: 0862-7959

Abstract

top
We introduce the notion of relative co-annihilator in lattice equality algebras and investigate some important properties of it. Then, we obtain some interesting relations among -irreducible filters, positive implicative filters, prime filters and relative co-annihilators. Given a lattice equality algebra 𝔼 and 𝔽 a filter of 𝔼 , we define the set of all 𝔽 -involutive filters of 𝔼 and show that by defining some operations on it, it makes a BL-algebra.

How to cite

top

Niazian, Sogol, Aaly Kologani, Mona, and Borzooei, Rajab Ali. "Relative co-annihilators in lattice equality algebras." Mathematica Bohemica 149.4 (2024): 585-602. <http://eudml.org/doc/299627>.

@article{Niazian2024,
abstract = {We introduce the notion of relative co-annihilator in lattice equality algebras and investigate some important properties of it. Then, we obtain some interesting relations among $ \vee $-irreducible filters, positive implicative filters, prime filters and relative co-annihilators. Given a lattice equality algebra $ \mathcal \{\mathbb \{E\}\} $ and $ \mathbb \{F\} $ a filter of $ \mathcal \{\mathbb \{E\}\} $, we define the set of all $ \mathbb \{F\} $-involutive filters of $ \mathcal \{\mathbb \{E\}\} $ and show that by defining some operations on it, it makes a BL-algebra.},
author = {Niazian, Sogol, Aaly Kologani, Mona, Borzooei, Rajab Ali},
journal = {Mathematica Bohemica},
keywords = {equality algebra; annihilator; co-annihilator; relative co-annihilator; filter},
language = {eng},
number = {4},
pages = {585-602},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Relative co-annihilators in lattice equality algebras},
url = {http://eudml.org/doc/299627},
volume = {149},
year = {2024},
}

TY - JOUR
AU - Niazian, Sogol
AU - Aaly Kologani, Mona
AU - Borzooei, Rajab Ali
TI - Relative co-annihilators in lattice equality algebras
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 149
IS - 4
SP - 585
EP - 602
AB - We introduce the notion of relative co-annihilator in lattice equality algebras and investigate some important properties of it. Then, we obtain some interesting relations among $ \vee $-irreducible filters, positive implicative filters, prime filters and relative co-annihilators. Given a lattice equality algebra $ \mathcal {\mathbb {E}} $ and $ \mathbb {F} $ a filter of $ \mathcal {\mathbb {E}} $, we define the set of all $ \mathbb {F} $-involutive filters of $ \mathcal {\mathbb {E}} $ and show that by defining some operations on it, it makes a BL-algebra.
LA - eng
KW - equality algebra; annihilator; co-annihilator; relative co-annihilator; filter
UR - http://eudml.org/doc/299627
ER -

References

top
  1. Abujabal, H. A. S., Obaid, M. A., Aslam, M., Thaheem, A. B., 10.1023/B:CMAJ.0000024536.04596.67, Czech. Math. J. 45 (1995), 727-735. (1995) Zbl0847.06009MR1354929DOI10.1023/B:CMAJ.0000024536.04596.67
  2. Borzooei, R. A., Zebardast, F., Kologani, M. Aaly, Some type filters in equality algebras, Categ. Gen. Algebr. Struct. Appl. 7 (2017), 33-55. (2017) Zbl1423.03257MR3681517
  3. Burris, S., Sankappanavar, H. P., 10.1007/978-1-4613-8130-3, Graduate Texts in Mathematics 78. Springer, New York (1981). (1981) Zbl0478.08001MR0648287DOI10.1007/978-1-4613-8130-3
  4. Ciungu, L. C., 10.1007/s00500-014-1494-3, Soft Comput. 19 (2015), 939-953. (2015) Zbl1392.06013DOI10.1007/s00500-014-1494-3
  5. Davey, B. A., 10.1007/BF02485743, Algebra Univers. 4 (1974), 316-322. (1974) Zbl0299.06007MR0357261DOI10.1007/BF02485743
  6. Filipoiu, A., About Baer extensions of MV-algebras, Math. Jap. 40 (1994), 235-241. (1994) Zbl0808.06015MR1297237
  7. Hájek, P., 10.1007/978-94-011-5300-3, Trends in Logic-Studia Logica Library 4. Kluwer Academic, Dordrecht (1998). (1998) Zbl0937.03030MR1900263DOI10.1007/978-94-011-5300-3
  8. Halaš, R., 10.1023/B:CMAJ.0000024536.04596.67, Czech. Math. J. 53 (2003), 1001-1007. (2003) Zbl1080.06035MR2018845DOI10.1023/B:CMAJ.0000024536.04596.67
  9. Jenei, S., 10.1007/s11225-012-9457-0, Stud. Log. 100 (2012), 1201-1209. (2012) Zbl1270.03138MR3001053DOI10.1007/s11225-012-9457-0
  10. Jenei, S., Kóródi, L., 10.2991/eusflat.2011.1, Proceedings of the 7th conference of the European Society for Fuzzy Logic and Technology Atlantis Press, Amsterdam (2011), 153-155. (2011) Zbl1254.08004DOI10.2991/eusflat.2011.1
  11. Leuştean, L., Some algebraic properties of non-commutative fuzzy structures, Stud. Inf. Control 9 (2000), 365-370. (2000) 
  12. Leuştean, L., Baer extensions of BL-algebras, J. Mult.-Val. Log. Soft Comput. 12 (2006), 321-336. (2006) Zbl1165.03057MR2288820
  13. Maroof, F. G., Saeid, A. Borumand, Eslami, E., 10.3233/IFS-162192, J. Intell. Fuzzy Syst. 31 (2016), 1263-1270. (2016) Zbl1366.03241MR3469089DOI10.3233/IFS-162192
  14. Meng, B. L., Xin, X. L., 10.1515/math-2015-0060, Open Math. 13 (2015), 639-654. (2015) Zbl1347.03109MR3414771DOI10.1515/math-2015-0060
  15. Niazian, S., Kologani, M. Aaly, Arya, S. Homayon, Borzooei, R. A., 10.18514/MMN.2023.3816, Miskolc Math. Notes 24 (2023), 933-951. (2023) Zbl7777173MR4619775DOI10.18514/MMN.2023.3816
  16. Paad, A., 10.2298/FIL1907113P, Filomat 33 (2019), 2113-2123. (2019) Zbl1499.06072MR4036366DOI10.2298/FIL1907113P
  17. Turunen, E., BL-algebras of basic fuzzy logic, Mathware Soft Comput. 6 (1999), 49-61. (1999) Zbl0962.03020MR1724318
  18. Xu, Y., Ruan, D., Qin, K., Liu, J., 10.1007/978-3-540-44847-1, Studies in Fuzziness and Soft Computing 132. Springer, Berlin (2003). (2003) Zbl1048.03003MR2027329DOI10.1007/978-3-540-44847-1
  19. Zebardast, F., Borzooei, R. A., Kologani, M. Aaly, 10.1016/j.ins.2016.11.027, Inf. Sci. 381 (2017), 270-282. (2017) Zbl1429.03219MR3584860DOI10.1016/j.ins.2016.11.027
  20. Zou, Y. X., Xin, X. L., He, P. F., 10.1515/math-2016-0029, Open Math. 14 (2016), 324-337. (2016) Zbl1349.06034MR3505725DOI10.1515/math-2016-0029

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.