Relative co-annihilators in lattice equality algebras
Sogol Niazian; Mona Aaly Kologani; Rajab Ali Borzooei
Mathematica Bohemica (2024)
- Volume: 149, Issue: 4, page 585-602
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topNiazian, Sogol, Aaly Kologani, Mona, and Borzooei, Rajab Ali. "Relative co-annihilators in lattice equality algebras." Mathematica Bohemica 149.4 (2024): 585-602. <http://eudml.org/doc/299627>.
@article{Niazian2024,
abstract = {We introduce the notion of relative co-annihilator in lattice equality algebras and investigate some important properties of it. Then, we obtain some interesting relations among $ \vee $-irreducible filters, positive implicative filters, prime filters and relative co-annihilators. Given a lattice equality algebra $ \mathcal \{\mathbb \{E\}\} $ and $ \mathbb \{F\} $ a filter of $ \mathcal \{\mathbb \{E\}\} $, we define the set of all $ \mathbb \{F\} $-involutive filters of $ \mathcal \{\mathbb \{E\}\} $ and show that by defining some operations on it, it makes a BL-algebra.},
author = {Niazian, Sogol, Aaly Kologani, Mona, Borzooei, Rajab Ali},
journal = {Mathematica Bohemica},
keywords = {equality algebra; annihilator; co-annihilator; relative co-annihilator; filter},
language = {eng},
number = {4},
pages = {585-602},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Relative co-annihilators in lattice equality algebras},
url = {http://eudml.org/doc/299627},
volume = {149},
year = {2024},
}
TY - JOUR
AU - Niazian, Sogol
AU - Aaly Kologani, Mona
AU - Borzooei, Rajab Ali
TI - Relative co-annihilators in lattice equality algebras
JO - Mathematica Bohemica
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 149
IS - 4
SP - 585
EP - 602
AB - We introduce the notion of relative co-annihilator in lattice equality algebras and investigate some important properties of it. Then, we obtain some interesting relations among $ \vee $-irreducible filters, positive implicative filters, prime filters and relative co-annihilators. Given a lattice equality algebra $ \mathcal {\mathbb {E}} $ and $ \mathbb {F} $ a filter of $ \mathcal {\mathbb {E}} $, we define the set of all $ \mathbb {F} $-involutive filters of $ \mathcal {\mathbb {E}} $ and show that by defining some operations on it, it makes a BL-algebra.
LA - eng
KW - equality algebra; annihilator; co-annihilator; relative co-annihilator; filter
UR - http://eudml.org/doc/299627
ER -
References
top- Abujabal, H. A. S., Obaid, M. A., Aslam, M., Thaheem, A. B., 10.1023/B:CMAJ.0000024536.04596.67, Czech. Math. J. 45 (1995), 727-735. (1995) Zbl0847.06009MR1354929DOI10.1023/B:CMAJ.0000024536.04596.67
- Borzooei, R. A., Zebardast, F., Kologani, M. Aaly, Some type filters in equality algebras, Categ. Gen. Algebr. Struct. Appl. 7 (2017), 33-55. (2017) Zbl1423.03257MR3681517
- Burris, S., Sankappanavar, H. P., 10.1007/978-1-4613-8130-3, Graduate Texts in Mathematics 78. Springer, New York (1981). (1981) Zbl0478.08001MR0648287DOI10.1007/978-1-4613-8130-3
- Ciungu, L. C., 10.1007/s00500-014-1494-3, Soft Comput. 19 (2015), 939-953. (2015) Zbl1392.06013DOI10.1007/s00500-014-1494-3
- Davey, B. A., 10.1007/BF02485743, Algebra Univers. 4 (1974), 316-322. (1974) Zbl0299.06007MR0357261DOI10.1007/BF02485743
- Filipoiu, A., About Baer extensions of MV-algebras, Math. Jap. 40 (1994), 235-241. (1994) Zbl0808.06015MR1297237
- Hájek, P., 10.1007/978-94-011-5300-3, Trends in Logic-Studia Logica Library 4. Kluwer Academic, Dordrecht (1998). (1998) Zbl0937.03030MR1900263DOI10.1007/978-94-011-5300-3
- Halaš, R., 10.1023/B:CMAJ.0000024536.04596.67, Czech. Math. J. 53 (2003), 1001-1007. (2003) Zbl1080.06035MR2018845DOI10.1023/B:CMAJ.0000024536.04596.67
- Jenei, S., 10.1007/s11225-012-9457-0, Stud. Log. 100 (2012), 1201-1209. (2012) Zbl1270.03138MR3001053DOI10.1007/s11225-012-9457-0
- Jenei, S., Kóródi, L., 10.2991/eusflat.2011.1, Proceedings of the 7th conference of the European Society for Fuzzy Logic and Technology Atlantis Press, Amsterdam (2011), 153-155. (2011) Zbl1254.08004DOI10.2991/eusflat.2011.1
- Leuştean, L., Some algebraic properties of non-commutative fuzzy structures, Stud. Inf. Control 9 (2000), 365-370. (2000)
- Leuştean, L., Baer extensions of BL-algebras, J. Mult.-Val. Log. Soft Comput. 12 (2006), 321-336. (2006) Zbl1165.03057MR2288820
- Maroof, F. G., Saeid, A. Borumand, Eslami, E., 10.3233/IFS-162192, J. Intell. Fuzzy Syst. 31 (2016), 1263-1270. (2016) Zbl1366.03241MR3469089DOI10.3233/IFS-162192
- Meng, B. L., Xin, X. L., 10.1515/math-2015-0060, Open Math. 13 (2015), 639-654. (2015) Zbl1347.03109MR3414771DOI10.1515/math-2015-0060
- Niazian, S., Kologani, M. Aaly, Arya, S. Homayon, Borzooei, R. A., 10.18514/MMN.2023.3816, Miskolc Math. Notes 24 (2023), 933-951. (2023) Zbl7777173MR4619775DOI10.18514/MMN.2023.3816
- Paad, A., 10.2298/FIL1907113P, Filomat 33 (2019), 2113-2123. (2019) Zbl1499.06072MR4036366DOI10.2298/FIL1907113P
- Turunen, E., BL-algebras of basic fuzzy logic, Mathware Soft Comput. 6 (1999), 49-61. (1999) Zbl0962.03020MR1724318
- Xu, Y., Ruan, D., Qin, K., Liu, J., 10.1007/978-3-540-44847-1, Studies in Fuzziness and Soft Computing 132. Springer, Berlin (2003). (2003) Zbl1048.03003MR2027329DOI10.1007/978-3-540-44847-1
- Zebardast, F., Borzooei, R. A., Kologani, M. Aaly, 10.1016/j.ins.2016.11.027, Inf. Sci. 381 (2017), 270-282. (2017) Zbl1429.03219MR3584860DOI10.1016/j.ins.2016.11.027
- Zou, Y. X., Xin, X. L., He, P. F., 10.1515/math-2016-0029, Open Math. 14 (2016), 324-337. (2016) Zbl1349.06034MR3505725DOI10.1515/math-2016-0029
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.