A remark on the multipliers on spaces of Weak Products of functions
Concrete Operators (2016)
- Volume: 3, Issue: 1, page 25-28
- ISSN: 2299-3282
Access Full Article
topAbstract
topHow to cite
topStefan Richter, and Brett D. Wick. "A remark on the multipliers on spaces of Weak Products of functions." Concrete Operators 3.1 (2016): 25-28. <http://eudml.org/doc/277107>.
@article{StefanRichter2016,
abstract = {If H denotes a Hilbert space of analytic functions on a region Ω ⊆ Cd , then the weak product is defined by [...] We prove that if H is a first order holomorphic Besov Hilbert space on the unit ball of Cd , then the multiplier algebras of H and of H ⊙ H coincide.},
author = {Stefan Richter, Brett D. Wick},
journal = {Concrete Operators},
keywords = {Dirichlet space; Drury-Arveson space; Weak product; Multiplier; weak product; multiplier},
language = {eng},
number = {1},
pages = {25-28},
title = {A remark on the multipliers on spaces of Weak Products of functions},
url = {http://eudml.org/doc/277107},
volume = {3},
year = {2016},
}
TY - JOUR
AU - Stefan Richter
AU - Brett D. Wick
TI - A remark on the multipliers on spaces of Weak Products of functions
JO - Concrete Operators
PY - 2016
VL - 3
IS - 1
SP - 25
EP - 28
AB - If H denotes a Hilbert space of analytic functions on a region Ω ⊆ Cd , then the weak product is defined by [...] We prove that if H is a first order holomorphic Besov Hilbert space on the unit ball of Cd , then the multiplier algebras of H and of H ⊙ H coincide.
LA - eng
KW - Dirichlet space; Drury-Arveson space; Weak product; Multiplier; weak product; multiplier
UR - http://eudml.org/doc/277107
ER -
References
top- [1] Arcozzi, Nicola and Rochberg, Richard and Sawyer, Eric and Wick, Brett D., Bilinear forms on the Dirichlet space, Anal. PDE, 3, 2010, no. 1, 21–47. Zbl1262.30066
- [2] Beatrous, Frank and Burbea, Jacob, Holomorphic Sobolev spaces on the ball, Dissertationes Math. (Rozprawy Mat.), Polska Akademia Nauk. Instytut Matematyczny. Dissertationes Mathematicae. Rozprawy Matematyczne, 276, 1989.
- [3] Cascante, Carme and Ortega, Joaquin M., On a characterization of bilinear forms on the Dirichlet space, Proc. Amer. Math. Soc., 140, 2012, no. 7, 2429–2440. Zbl1276.30063
- [4] Cascante, Carme and Fàbrega, Joan and Ortega, Joaquín M., On weighted Toeplitz, big Hankel operators and Carleson measures, Integral Equations Operator Theory, 66, 2010, no.4, 495–528. Zbl1217.47058
- [5] Coifman, R. R. and Rochberg, R. and Weiss, Guido, Factorization theorems for Hardy spaces in several variables, Ann. of Math. (2) , 103, 1976, no. 3, 611–635. Zbl0326.32011
- [6] Luo, Shuaibing and Richter, Stefan, Hankel operators and invariant subspaces of the Dirichlet space, J. Lond. Math. Soc. (2), 91, 2015, no. 2, 423–438. Zbl1331.47037
- [7] Luo, Shuaibing, On the Index of Invariant Subspaces in the Space of Weak Products of Dirichlet Functions, Complex Anal. Oper. Theory, 9, 2015, no. 6, 1311–1323. Zbl1343.46022
- [8] Ortega, Joaquín and Fàbrega, Joan, Multipliers in Hardy-Sobolev spaces, Integral Equations Operator Theory, 55, 2006, no. 4, 535–560.
- [9] Richter, Stefan and Sundberg, Carl, Weak products of Dirichlet functions, J. Funct. Anal., 266, 2014, no. 8, 5270–5299. Zbl1303.30050
- [10] Richter, Stefan and Sunkes, James, Hankel operators, Invariant subspaces, and cyclic vectors in the Drury-Arveson space, Proc. Amer. Math. Soc., Proc. Amer. Math. Soc., to appear. Zbl06560782
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.