# A fixed point approach to the Mittag-Leffler-Hyers-Ulam stability of a fractional integral equation

Nasrin Eghbali; Vida Kalvandi; John M. Rassias

Open Mathematics (2016)

- Volume: 14, Issue: 1, page 237-246
- ISSN: 2391-5455

## Access Full Article

top## Abstract

top## How to cite

topNasrin Eghbali, Vida Kalvandi, and John M. Rassias. "A fixed point approach to the Mittag-Leffler-Hyers-Ulam stability of a fractional integral equation." Open Mathematics 14.1 (2016): 237-246. <http://eudml.org/doc/277112>.

@article{NasrinEghbali2016,

abstract = {In this paper, we have presented and studied two types of the Mittag-Leffler-Hyers-Ulam stability of a fractional integral equation. We prove that the fractional order delay integral equation is Mittag-Leffler-Hyers-Ulam stable on a compact interval with respect to the Chebyshev and Bielecki norms by two notions.},

author = {Nasrin Eghbali, Vida Kalvandi, John M. Rassias},

journal = {Open Mathematics},

keywords = {Fractional order delay integral equation; Mittag-Leffler-Hyers-Ulam stability; Chebyshev norm; Bielecki norm; fractional-order delay integral equation},

language = {eng},

number = {1},

pages = {237-246},

title = {A fixed point approach to the Mittag-Leffler-Hyers-Ulam stability of a fractional integral equation},

url = {http://eudml.org/doc/277112},

volume = {14},

year = {2016},

}

TY - JOUR

AU - Nasrin Eghbali

AU - Vida Kalvandi

AU - John M. Rassias

TI - A fixed point approach to the Mittag-Leffler-Hyers-Ulam stability of a fractional integral equation

JO - Open Mathematics

PY - 2016

VL - 14

IS - 1

SP - 237

EP - 246

AB - In this paper, we have presented and studied two types of the Mittag-Leffler-Hyers-Ulam stability of a fractional integral equation. We prove that the fractional order delay integral equation is Mittag-Leffler-Hyers-Ulam stable on a compact interval with respect to the Chebyshev and Bielecki norms by two notions.

LA - eng

KW - Fractional order delay integral equation; Mittag-Leffler-Hyers-Ulam stability; Chebyshev norm; Bielecki norm; fractional-order delay integral equation

UR - http://eudml.org/doc/277112

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.