Convex cones in finite-dimensional real vector spaces

Milan Studený

Kybernetika (1993)

  • Volume: 29, Issue: 2, page 180-200
  • ISSN: 0023-5954

How to cite

top

Studený, Milan. "Convex cones in finite-dimensional real vector spaces." Kybernetika 29.2 (1993): 180-200. <http://eudml.org/doc/27712>.

@article{Studený1993,
author = {Studený, Milan},
journal = {Kybernetika},
keywords = {survey; convex cones; extreme ray; regular cone; rational pyramid},
language = {eng},
number = {2},
pages = {180-200},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Convex cones in finite-dimensional real vector spaces},
url = {http://eudml.org/doc/27712},
volume = {29},
year = {1993},
}

TY - JOUR
AU - Studený, Milan
TI - Convex cones in finite-dimensional real vector spaces
JO - Kybernetika
PY - 1993
PB - Institute of Information Theory and Automation AS CR
VL - 29
IS - 2
SP - 180
EP - 200
LA - eng
KW - survey; convex cones; extreme ray; regular cone; rational pyramid
UR - http://eudml.org/doc/27712
ER -

References

top
  1. S. A. Ashmanov, Linear Programming, (in Russian). Nauka, Moscow 1981. (1981) Zbl0578.90049
  2. A. Brøndsted, An Introduction to Convex Polytopes, Springer-Verlag, New York - Berlin - Heidelberg - Tokyo 1983. Russian translation: Mir, Moscow 1988. (1983) MR0683612
  3. V. Chvatal, Linear Programming, W. H. Freeman, New York - San Francisco 1983. (1983) Zbl0537.90067MR0717219
  4. P. R. Halmos, Finite-Dimensional Vector Spaces, Springer-Verlag, New York - Heidelberg - Berlin 1974. (1974) Zbl0288.15002MR0409503
  5. J. L. Kelley, General Topology, D. van Nostrand, London - New York - Toronto 1957. (1957) MR0070144
  6. J. L. Kelley, I. Namioka, Linear Topological Spaces, D. van Nostrand, Princeton - Toronto - London - Melbourne 1963. (1963) Zbl0115.09902MR0166578
  7. R. T. Rockafellar, Convex Analysis, Princeton Univ. Press, Princeton, N.J. 1970. Russian translation: Mir, Moscow 1973. (1970) Zbl0193.18401MR0274683
  8. M. Studený, Description of structures of stochastic conditional independence by means of faces and imsets. Part 1: Introduction and basic concepts, Part 2: Basic theory, Part 3: Examples of use and appendices, Internat. J. Gen. Systems (submitted). 
  9. H. Weyl, Elementare Theorie der konvexen Polyeder, (in German). Commentarii Mathematici Helvetici 7 (1934/5), 290-306. (1934) MR1509514

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.