Convex cones in finite-dimensional real vector spaces
Kybernetika (1993)
- Volume: 29, Issue: 2, page 180-200
- ISSN: 0023-5954
Access Full Article
topHow to cite
topStudený, Milan. "Convex cones in finite-dimensional real vector spaces." Kybernetika 29.2 (1993): 180-200. <http://eudml.org/doc/27712>.
@article{Studený1993,
author = {Studený, Milan},
journal = {Kybernetika},
keywords = {survey; convex cones; extreme ray; regular cone; rational pyramid},
language = {eng},
number = {2},
pages = {180-200},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Convex cones in finite-dimensional real vector spaces},
url = {http://eudml.org/doc/27712},
volume = {29},
year = {1993},
}
TY - JOUR
AU - Studený, Milan
TI - Convex cones in finite-dimensional real vector spaces
JO - Kybernetika
PY - 1993
PB - Institute of Information Theory and Automation AS CR
VL - 29
IS - 2
SP - 180
EP - 200
LA - eng
KW - survey; convex cones; extreme ray; regular cone; rational pyramid
UR - http://eudml.org/doc/27712
ER -
References
top- S. A. Ashmanov, Linear Programming, (in Russian). Nauka, Moscow 1981. (1981) Zbl0578.90049
- A. Brøndsted, An Introduction to Convex Polytopes, Springer-Verlag, New York - Berlin - Heidelberg - Tokyo 1983. Russian translation: Mir, Moscow 1988. (1983) MR0683612
- V. Chvatal, Linear Programming, W. H. Freeman, New York - San Francisco 1983. (1983) Zbl0537.90067MR0717219
- P. R. Halmos, Finite-Dimensional Vector Spaces, Springer-Verlag, New York - Heidelberg - Berlin 1974. (1974) Zbl0288.15002MR0409503
- J. L. Kelley, General Topology, D. van Nostrand, London - New York - Toronto 1957. (1957) MR0070144
- J. L. Kelley, I. Namioka, Linear Topological Spaces, D. van Nostrand, Princeton - Toronto - London - Melbourne 1963. (1963) Zbl0115.09902MR0166578
- R. T. Rockafellar, Convex Analysis, Princeton Univ. Press, Princeton, N.J. 1970. Russian translation: Mir, Moscow 1973. (1970) Zbl0193.18401MR0274683
- M. Studený, Description of structures of stochastic conditional independence by means of faces and imsets. Part 1: Introduction and basic concepts, Part 2: Basic theory, Part 3: Examples of use and appendices, Internat. J. Gen. Systems (submitted).
- H. Weyl, Elementare Theorie der konvexen Polyeder, (in German). Commentarii Mathematici Helvetici 7 (1934/5), 290-306. (1934) MR1509514
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.