# Large Degree Vertices in Longest Cycles of Graphs, I

Binlong Li; Liming Xiong; Jun Yin

Discussiones Mathematicae Graph Theory (2016)

- Volume: 36, Issue: 2, page 363-382
- ISSN: 2083-5892

## Access Full Article

top## Abstract

top## How to cite

topBinlong Li, Liming Xiong, and Jun Yin. "Large Degree Vertices in Longest Cycles of Graphs, I." Discussiones Mathematicae Graph Theory 36.2 (2016): 363-382. <http://eudml.org/doc/277123>.

@article{BinlongLi2016,

abstract = {In this paper, we consider the least integer d such that every longest cycle of a k-connected graph of order n (and of independent number α) contains all vertices of degree at least d.},

author = {Binlong Li, Liming Xiong, Jun Yin},

journal = {Discussiones Mathematicae Graph Theory},

keywords = {longest cycle; large degree vertices; order; connectivity; independent number},

language = {eng},

number = {2},

pages = {363-382},

title = {Large Degree Vertices in Longest Cycles of Graphs, I},

url = {http://eudml.org/doc/277123},

volume = {36},

year = {2016},

}

TY - JOUR

AU - Binlong Li

AU - Liming Xiong

AU - Jun Yin

TI - Large Degree Vertices in Longest Cycles of Graphs, I

JO - Discussiones Mathematicae Graph Theory

PY - 2016

VL - 36

IS - 2

SP - 363

EP - 382

AB - In this paper, we consider the least integer d such that every longest cycle of a k-connected graph of order n (and of independent number α) contains all vertices of degree at least d.

LA - eng

KW - longest cycle; large degree vertices; order; connectivity; independent number

UR - http://eudml.org/doc/277123

ER -

## References

top- [1] B. Bollobás and G. Brightwell, Cycles through specified vertices, Combinatorica 13 (1993) 147-155. doi:10.1007/BF01303200[Crossref] Zbl0780.05033
- [2] J.A. Bondy and U.S.R. Murty, Graph Theory (Springer-Verlag, London, 2008).
- [3] V. Chvátal and P. Erdős, A note on Hamiltonian circuits, Discrete Math. 2 (1972) 111-113. doi:10.1016/0012-365X(72)90079-9[Crossref]
- [4] G.A. Dirac, Some theorems on abstract graphs, Proc. Lond. Math. Soc. (3)2 (1952) 69-81. doi:10.1112/plms/s3-2.1.69[Crossref]
- [5] M. Kouider, Cycles in graphs with prescribed stability number and connectivity, J. Combin. Theory Ser. B 60 (1994) 315-318. doi:10.1006/jctb.1994.1023[Crossref] Zbl0805.05045
- [6] B. Li and S. Zhang, Forbidden subgraphs for longest cycles to contain vertices with large degree, Discrete Math. 338 (2015) 1681-1689. doi:10.1016/j.disc.2014.07.003[Crossref][WoS]
- [7] D. Paulusma and K. Yoshimoto, Cycles through specified vertices in triangle-free graphs, Discuss. Math. Graph Theory 27 (2007) 179-191. doi:10.7151/dmgt.1354[Crossref] Zbl1134.05043
- [8] A. Saito, Long cycles through specified vertices in a graph, J. Combin. Theory Ser. B 47 (1989) 220-230. doi:10.1016/0095-8956(89)90021-X[Crossref]
- [9] R. Shi, 2-neighborhoods and Hamiltonian conditions, J. Graph Theory 16 (1992) 267-271. doi:10.1002/jgt.3190160310[Crossref] Zbl0761.05066
- [10] S. O, D.B. West and H. Wu, Longest cycles in k-connected graphs with given inde- pendence number , J. Combin. Theory Ser. B 101 (2011) 480-485. doi:10.1016/j.jctb.2011.02.005[Crossref]

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.