Hoeffding spaces and Specht modules
Giovanni Peccati; Jean-Renaud Pycke
ESAIM: Probability and Statistics (2011)
- Volume: 15, page S58-S68
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topPeccati, Giovanni, and Pycke, Jean-Renaud. "Hoeffding spaces and Specht modules." ESAIM: Probability and Statistics 15 (2011): S58-S68. <http://eudml.org/doc/277134>.
@article{Peccati2011,
abstract = {It is proved that each Hoeffding space associated with a random permutation (or, equivalently, with extractions without replacement from a finite population) carries an irreducible representation of the symmetric group, equivalent to a two-block Specht module.},
author = {Peccati, Giovanni, Pycke, Jean-Renaud},
journal = {ESAIM: Probability and Statistics},
keywords = {exchangeability; finite population statistics; Hoeffding decompositions; irreducible representations; random permutations; Specht modules; symmetric group},
language = {eng},
pages = {S58-S68},
publisher = {EDP-Sciences},
title = {Hoeffding spaces and Specht modules},
url = {http://eudml.org/doc/277134},
volume = {15},
year = {2011},
}
TY - JOUR
AU - Peccati, Giovanni
AU - Pycke, Jean-Renaud
TI - Hoeffding spaces and Specht modules
JO - ESAIM: Probability and Statistics
PY - 2011
PB - EDP-Sciences
VL - 15
SP - S58
EP - S68
AB - It is proved that each Hoeffding space associated with a random permutation (or, equivalently, with extractions without replacement from a finite population) carries an irreducible representation of the symmetric group, equivalent to a two-block Specht module.
LA - eng
KW - exchangeability; finite population statistics; Hoeffding decompositions; irreducible representations; random permutations; Specht modules; symmetric group
UR - http://eudml.org/doc/277134
ER -
References
top- [1] D.J. Aldous, Exchangeability and related topics. École d'été de Probabilités de Saint-Flour XIII. LNM 1117, Springer, New York (1983). Zbl0562.60042MR883646
- [2] M. Bloznelis, Orthogonal decomposition of symmetric functions defined on random permutations. Combin. Probab. Comput.14 (2005) 249–268. Zbl1080.60005MR2138112
- [3] M. Bloznelis and F. Götze, Orthogonal decomposition of finite population statistics and its applications to distributional asymptotics. Ann. Stat.29 (2001) 353–365. Zbl1012.62009MR1865345
- [4] M. Bloznelis and F. Götze, An Edgeworth expansion for finite population statistics. Ann. Probab.30 (2002) 1238–1265. Zbl1010.62017MR1920107
- [5] P. Diaconis, Group Representations in Probability and Statistics. IMS Lecture Notes – Monograph Series 11, Hayward, California (1988). Zbl0695.60012MR964069
- [6] J.J. Duistermaat and J.A.C. Kolk, Lie groups. Springer-Verlag, Berlin-Heidelberg-New York (1997). Zbl0955.22001MR1738431
- [7] O. El-Dakkak and G. Peccati, Hoeffding decompositions and urn sequences. Ann. Probab.36 (2008) 2280–2310. Zbl1163.60015MR2478683
- [8] G.D. James, The representation theory of the symmetric groups. Lecture Notes in Math. 682, Springer-Verlag, Berlin-Heidelberg-New York (1978). Zbl0393.20009MR513828
- [9] G. Peccati, Hoeffding-ANOVA decompositions for symmetric statistics of exchangeable observations. Ann. Probab.32 (2004) 1796–1829. Zbl1055.62060MR2073178
- [10] G. Peccati and J.-R. Pycke, Decompositions of stochastic processes based on irreducible group representations. Theory Probab. Appl.54 (2010) 217–245. Zbl1229.60039MR2761557
- [11] B.E. Sagan, The Symmetric Group. Representations, Combinatorial Algorithms and Symmetric Functions, 2nd edition. Springer, New York (2001). Zbl0964.05070MR1824028
- [12] R.J. Serfling, Approximation Theorems of Mathematical Statistics. Wiley, New York (1980). Zbl1001.62005MR595165
- [13] J.-P. Serre, Linear representations of finite groups, Graduate Texts Math. 42, Springer, New York (1977). Zbl0355.20006MR450380
- [14] L. Zhao and X. Chen, Normal approximation for finite-population U-statistics. Acta Math. Appl. Sinica6 (1990) 263–272. Zbl0724.60024MR1078067
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.