Large deviations for directed percolation on a thin rectangle
ESAIM: Probability and Statistics (2011)
- Volume: 15, page 217-232
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topIbrahim, Jean-Paul. "Large deviations for directed percolation on a thin rectangle." ESAIM: Probability and Statistics 15 (2011): 217-232. <http://eudml.org/doc/277140>.
@article{Ibrahim2011,
abstract = {Following the recent investigations of Baik and Suidan in [Int. Math. Res. Not. (2005) 325–337] and Bodineau and Martin in [Electron. Commun. Probab. 10 (2005) 105–112 (electronic)], we prove large deviation properties for a last-passage percolation model in ℤ+2 whose paths are close to the axis. The results are mainly obtained when the random weights are Gaussian or have a finite moment-generating function and rely, as in [J. Baik and T.M. Suidan, Int. Math. Res. Not. (2005) 325–337] and [T. Bodineau and J. Martin, Electron. Commun. Probab. 10 (2005) 105–112 (electronic)], on an embedding in Brownian paths and the KMT approximation. The study of the subexponential case completes the exposition.},
author = {Ibrahim, Jean-Paul},
journal = {ESAIM: Probability and Statistics},
keywords = {large deviations; random growth model; Skorokhod embedding theorem},
language = {eng},
pages = {217-232},
publisher = {EDP-Sciences},
title = {Large deviations for directed percolation on a thin rectangle},
url = {http://eudml.org/doc/277140},
volume = {15},
year = {2011},
}
TY - JOUR
AU - Ibrahim, Jean-Paul
TI - Large deviations for directed percolation on a thin rectangle
JO - ESAIM: Probability and Statistics
PY - 2011
PB - EDP-Sciences
VL - 15
SP - 217
EP - 232
AB - Following the recent investigations of Baik and Suidan in [Int. Math. Res. Not. (2005) 325–337] and Bodineau and Martin in [Electron. Commun. Probab. 10 (2005) 105–112 (electronic)], we prove large deviation properties for a last-passage percolation model in ℤ+2 whose paths are close to the axis. The results are mainly obtained when the random weights are Gaussian or have a finite moment-generating function and rely, as in [J. Baik and T.M. Suidan, Int. Math. Res. Not. (2005) 325–337] and [T. Bodineau and J. Martin, Electron. Commun. Probab. 10 (2005) 105–112 (electronic)], on an embedding in Brownian paths and the KMT approximation. The study of the subexponential case completes the exposition.
LA - eng
KW - large deviations; random growth model; Skorokhod embedding theorem
UR - http://eudml.org/doc/277140
ER -
References
top- [1] J. Baik and T.M. Suidan, A GUE central limit theorem and universality of directed first and last passage site percolation. Int. Math. Res. Not. (2005) 325–337. Zbl1136.60313MR2131383
- [2] Yu. Baryshnikov, GUEs and queues. Probab. Theory Relat. Fields119 (2001) 256–274. Zbl0980.60042MR1818248
- [3] G. Ben Arous, A. Dembo and A. Guionnet, Aging of spherical spin glasses. Probab. Theory Relat. Fields120 (2001) 1–67. Zbl0993.60055MR1856194
- [4] G. Ben Arous and A. Guionnet, Large deviations for Wigner’s law and Voiculescu’s non-commutative entropy. Probab. Theory Relat. Fields108 (1997) 517–542. Zbl0954.60029MR1465640
- [5] T. Bodineau and J. Martin, A universality property for last-passage percolation paths close to the axis. Electron. Commun. Probab. 10 (2005) 105–112 (electronic). Zbl1111.60068MR2150699
- [6] L. Breiman, Probability, Classics in Applied Mathematics 7. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1992). Corrected reprint of the 1968 original. Zbl0753.60001MR1163370
- [7] D.L. Burkholder, Distribution function inequalities for martingales. Ann. Probability1 (1973) 19–42. Zbl0301.60035MR365692
- [8] S. Chatterjee, A simple invariance theorem. Preprint arXiv:math.PR/0508213 (2005).
- [9] S. Csörgő and P. Hall, The Komlós-Major-Tusnády approximations and their applications. Austral. J. Statist.26 (1984) 189–218. Zbl0557.60028MR766619
- [10] B. Davis, On the Lp norms of stochastic integrals and other martingales. Duke Math. J.43 (1976) 697–704. Zbl0349.60061MR418219
- [11] D. Féral, On large deviations for the spectral measure of discrete coulomb gas, in Séminaire de Probabilités, XLI. Lecture Notes in Math. 1934. Springer, Berlin (2008) 19–50. Zbl1215.82014MR2483725
- [12] D.H. Fuk, Certain probabilistic inequalities for martingales. Sibirsk. Mat. Ž. 14 (1973) 185–193, 239. Zbl0273.60029MR326835
- [13] D.H. Fuk and S.V. Nagaev, Probabilistic inequalities for sums of independent random variables. Teor. Verojatnost. i Primenen.16 (1971) 660–675. Zbl0259.60024MR293695
- [14] J. Gravner, C.A. Tracy and H. Widom, Limit theorems for height fluctuations in a class of discrete space and time growth models. J. Statist. Phys.102 (2001) 1085–1132. Zbl0989.82030MR1830441
- [15] K. Johansson, On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J.91 (1998) 151–204. Zbl1039.82504MR1487983
- [16] K. Johansson, Shape fluctuations and random matrices. Comm. Math. Phys.209 (2000) 437–476. Zbl0969.15008MR1737991
- [17] J. Komlós, P. Major and G. Tusnády, An approximation of partial sums of independent RV’s, and the sample DF. II. Z. Wahrscheinlichkeitstheor. und Verw. Geb.34 (1976) 33–58. Zbl0307.60045MR402883
- [18] W. König, Orthogonal polynomial ensembles in probability theory. Prob. Surveys 2 (2005) 385–447 (electronic). Zbl1189.60024MR2203677
- [19] M. Ledoux, Deviation inequalities on largest eigenvalues, in Geometric aspects of functional analysis. Lecture Notes in Math. 1910 (2007) 167–219. Zbl1130.15012MR2349607
- [20] M. Ledoux and B. Rider, Small deviations for beta ensembles. Preprint (2010). Zbl1228.60015MR2678393
- [21] M.L. Mehta, Random matrices, 2nd edition. Academic Press Inc., Boston, MA (1991). Zbl0780.60014MR1083764
- [22] T. Mikosch and A.V. Nagaev, Large deviations of heavy-tailed sums with applications in insurance. Extremes1 (1998) 81–110. Zbl0927.60037MR1652936
- [23] N. O’Connell and M. Yor, A representation for non-colliding random walks. Electron. Commun. Probab. 7 (2002) 1–12 (electronic). Zbl1037.15019MR1887169
- [24] D.l Revuz and M. Yor, Continuous martingales and Brownian motion, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 293, 3rd edition,. Springer-Verlag, Berlin (1999). Zbl0917.60006MR1725357
- [25] E.B. Saff and V. Totik, Logarithmic potentials with external fields, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 316. Springer-Verlag, Berlin (1997). Appendix B by Thomas Bloom. Zbl0881.31001MR1485778
- [26] A.I. Sakhanenko, A new way to obtain estimates in the invariance principle, in High dimensional probability, II (Seattle, WA, 1999), Progr. Probab. 47. Birkhäuser Boston, Boston, MA (2000) 223–245. Zbl0971.60032MR1857325
- [27] S. Sawyer, A remark on the Skorohod representation. Z. Wahrscheinlichkeitstheor. und Verw. Geb.23 (1972) 67–74. Zbl0226.60068MR310939
- [28] A.V. Skorokhod, Studies in the theory of random processes. Translated from the Russian by Scripta Technica, Inc. Addison-Wesley Publishing Co., Inc., Reading, Mass (1965). Zbl0146.37701MR185620
- [29] T. Suidan, A remark on a theorem of Chatterjee and last passage percolation. J. Phys. A39 (2006) 8977–8981. Zbl1148.82014MR2240468
- [30] C.A. Tracy and H. Widom, Level-spacing distributions and the Airy kernel. Phys. Lett. B305 (1993) 115–118. Zbl0789.35152MR1215903
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.