Local martingales and filtration shrinkage

Hans Föllmer; Philip Protter

ESAIM: Probability and Statistics (2011)

  • Volume: 15, page S25-S38
  • ISSN: 1292-8100

Abstract

top
A general theory is developed for the projection of martingale related processes onto smaller filtrations, to which they are not even adapted. Martingales, supermartingales, and semimartingales retain their nature, but the case of local martingales is more delicate, as illustrated by an explicit case study for the inverse Bessel process. This has implications for the concept of No Free Lunch with Vanishing Risk, in Finance.

How to cite

top

Föllmer, Hans, and Protter, Philip. "Local martingales and filtration shrinkage." ESAIM: Probability and Statistics 15 (2011): S25-S38. <http://eudml.org/doc/277146>.

@article{Föllmer2011,
abstract = {A general theory is developed for the projection of martingale related processes onto smaller filtrations, to which they are not even adapted. Martingales, supermartingales, and semimartingales retain their nature, but the case of local martingales is more delicate, as illustrated by an explicit case study for the inverse Bessel process. This has implications for the concept of No Free Lunch with Vanishing Risk, in Finance.},
author = {Föllmer, Hans, Protter, Philip},
journal = {ESAIM: Probability and Statistics},
keywords = {filtration shrinkage; filtration expansion; martingales; semimartingales; local time; brownian motion},
language = {eng},
pages = {S25-S38},
publisher = {EDP-Sciences},
title = {Local martingales and filtration shrinkage},
url = {http://eudml.org/doc/277146},
volume = {15},
year = {2011},
}

TY - JOUR
AU - Föllmer, Hans
AU - Protter, Philip
TI - Local martingales and filtration shrinkage
JO - ESAIM: Probability and Statistics
PY - 2011
PB - EDP-Sciences
VL - 15
SP - S25
EP - S38
AB - A general theory is developed for the projection of martingale related processes onto smaller filtrations, to which they are not even adapted. Martingales, supermartingales, and semimartingales retain their nature, but the case of local martingales is more delicate, as illustrated by an explicit case study for the inverse Bessel process. This has implications for the concept of No Free Lunch with Vanishing Risk, in Finance.
LA - eng
KW - filtration shrinkage; filtration expansion; martingales; semimartingales; local time; brownian motion
UR - http://eudml.org/doc/277146
ER -

References

top
  1. [1] S. Blei and H.J. Engelbert, On Exponential Local Martingales Associated with Strong Markov Continuous Local Martingales. Stoch. Process. Appl.119 (2009) 2859–2880. Zbl1192.60068MR2554031
  2. [2] P. Brémaud and M. Yor, Changes of Filtration and Probability Measures. Z. Wahrscheinlichkeitstheorie verw. Gebiete 45 (1978) 269–295. Zbl0415.60048MR511775
  3. [3] U. Çetin, R. Jarrow, P. Protter and Y. Yildirim, Modeling credit risk with partial information. Ann. Appl. Probab.14 (2004) 1167–1178. Zbl1048.60048MR2071419
  4. [4] A. Cox and D. Hobson, Local martingales, bubbles and option prices. Finance Stoch.9 (2005) 477–492. Zbl1092.91023MR2213778
  5. [5] F. Delbaen and W. Schachermayer, The Mathematics of Arbitrage. Springer-Verlag, Heidelberg (2006). Zbl1106.91031MR2200584
  6. [6] C. Dellacherie and P.A. Meyer, Probabilités et Potentiel: Chapitres V à VIII, Théorie des Martingales. Hermann, Paris (1980). Zbl0464.60001MR566768
  7. [7] H. Föllmer, The exit measure of a supermartingale. Z. Wahrscheinlichkeitstheorie verw. Gebiete 21 (1972) 154–166. Zbl0231.60033MR309184
  8. [8] H. Föllmer, On the representation of semimartingales. Ann. Probab.1 (1973) 580–589. Zbl0265.60044MR353446
  9. [9] H. Föllmer, P. Protter and A.S. Shiryaev, Quadratic covariation and an extension of Itô's formula. Bernoulli1 (2005) 149–169. Zbl0851.60048
  10. [10] K. Itô and S. Watanabe, Transformation of Markov processes by multiplicative functionals. Ann. Inst. Fourier15 (1965) 15–30. Zbl0141.15103MR184282
  11. [11] R. Jarrow and P. Protter, Structural versus Reduced Form Models: A New Information Based Perspective. J. Invest. Manage.2 (2004) 34–43. 
  12. [12] R. Jarrow and P. Protter, Large Traders, Hidden Arbitrage, and Complete Markets. J. Bank. Financ. 29 (2005) 2803–2810. 
  13. [13] R. Jarrow, P. Protter and D. Sezer, Information Reduction via Level Crossings in a Credit Risk Model. Finance Stoch.11 (2007) 195–212. Zbl1143.91031MR2295828
  14. [14] R. Jarrow, P. Protter and K. Shimbo, Asset price bubbles in a complete market. Adv. Math. Finance, in Honor of Dilip B. Madan (2006) 105–130. Zbl1154.91452
  15. [15] R. Jarrow, P. Protter and K. Shimbo, Asset price bubbles in an incomplete market. Math. Finance20 (2010) 145–185. Zbl1205.91069MR2650245
  16. [16] T. Jeulin and M. Yor, Inégalité de Hardy, semimartingales, et faux-amis, in Séminaire de Probabilités XIII. Lect. Notes Math. 721, Springer, Heidelberg, Berlin, New York (1979) 332–359. Zbl0419.60049MR544805
  17. [17] G. Johnson and L.L. Helms, Class (D) Supermartingales. Bull. Am. Math. Soc.69 (1963) 59–62. Zbl0133.40402MR142148
  18. [18] N. Kazamaki, Krickeberg's decomposition for local martingales, in Séminaire de Probabilités VI. Lecture Notes in Math. 258, Springer, Heidelberg, Berlin, New York (1972) 101–103. Zbl0231.60035MR372990
  19. [19] M. Loewenstein and G.A. Willard, Rational equilibrium asset-pricing bubbles in continuous trading models. J. Econ. Theory91 (2000) 17–58. Zbl0954.91021MR1748373
  20. [20] P.A. Meyer, Probability and Potentials. Blaisdell, Waltham (1966). Zbl0138.10401MR205288
  21. [21] P.A. Meyer, La mesure de H. Föllmer en théorie des surmartingales, in Séminaire de Probabilités VI. Lecture Notes in Math. 258, Springer, Heidelberg, Berlin, New York (1971) 118–129. Zbl0231.60034MR368131
  22. [22] P.A. Meyer, Martingales and stochastic integrals. Lect. Notes Math. 284, Springer, Heidelberg, Berlin, New York (1972). Zbl0239.60001MR426145
  23. [23] P.A. Meyer, Sur un théorème de C. Stricker, in Séminaire de Probabilités XI. Lecture Notes in Math. 581, Springer, Heidelberg, Berlin, New York (1977) 482–489. Zbl0372.60060MR458579
  24. [24] A. Mijatović and M. Urusov, The Martingale Property of Certain Local Martingales. arXiv:0905.3701 (2009) Zbl1243.60038MR2875751
  25. [25] S. Pal and P. Protter, Analysis of continuous strict local martingales via h-transforms. Stoch. Process. Appl.120 (2010) 1424–1443. Zbl1198.60020MR2653260
  26. [26] P. Protter, A Partial Introduction to Financial Asset Pricing Theory. Stoch. Process. Appl.91 (2001) 169–203. Zbl1048.91067MR1807684
  27. [27] P. Protter, Stochastic Integration and Differential Equations, 2nd edition, Version 2.1. Springer-Verlag, Heidelberg (2005). Zbl0694.60047MR2273672
  28. [28] D. Revuz and M. Yor, Continuous martingales and Brownian motion, 3rd edition. Springer, Berlin-Heidelberg (1999). Zbl1087.60040MR1725357
  29. [29] D. Sezer, Filtration shrinkage by level crossings of a diffusion. Ann. Probab.35 (2007) 739–757. Zbl1128.60070MR2308595
  30. [30] C. Stricker, Quasimartingales, martingales locales, et filtrations naturelles. Z. Wahrscheinlichkeitstheorie verw. Gebiete 39 (1977) 55–63. Zbl0362.60069MR471072

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.