A note on spider walks
Christophe Gallesco; Sebastian Müller; Serguei Popov
ESAIM: Probability and Statistics (2011)
- Volume: 15, page 390-401
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] T. Antal, P.L. Krapivsky and K. Mallick, Molecular spiders in one dimension. J. Stat. Mech. (2007). MR2338265
- [2] G. Fayolle, V.A. Malyshev and M.V. Menshikov, Topics in the constructive theory of countable Markov chains. Cambridge University Press, Cambridge (1995). Zbl0823.60053MR1331145
- [3] C. Gallesco, S. Müller, S. Popov and M. Vachkovskaia, Spiders in random environment. arXiv:1001.2533 (2010). Zbl1276.60123
- [4] M. Kanai, Rough isometries and the parabolicity of Riemannian manifolds. J. Math. Soc. Jpn38 (1986) 227–238. Zbl0577.53031MR833199
- [5] J.G. Kemeny, J.L. Snell and A.W. Knapp, Denumerable Markov Chains. Graduate Text in Mathematics 40, 2nd edition, Springer Verlag (1976). Zbl0348.60090MR407981
- [6] J. Lamperti, Criterion for the recurrence or transience of stochastic process. I. J. Math. Anal. Appl.1 (1960) 314–330. Zbl0099.12901MR126872
- [7] R. Lyons and Y. Peres, Probability on Trees and Networks. Cambridge University Press. In preparation. Current version available at http://mypage.iu.edu/ rdlyons/, (2009).
- [8] W. Woess, Random walks on infinite graphs and groups, Cambridge Tracts in Mathematics 138. Cambridge University Press, Cambridge (2000). Zbl0951.60002MR1743100
- [9] W. Woess, Denumerable Markov chains. EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich (2009). Zbl1219.60001MR2548569