The periodic Ambrosetti-Prodi problem for nonlinear perturbations of the p-Laplacian

Jean Mawhin

Journal of the European Mathematical Society (2006)

  • Volume: 008, Issue: 2, page 375-388
  • ISSN: 1435-9855

Abstract

top
We prove an Ambrosetti–Prodi type result for the periodic solutions of the equation ( | u ' | p 2 u ' ) ) ' + f ( u ) u ' + g ( x , u ) = t , when f is arbitrary and g ( x , u ) + or g ( x , u ) when | u | . The proof uses upper and lower solutions and the Leray–Schauder degree.

How to cite

top

Mawhin, Jean. "The periodic Ambrosetti-Prodi problem for nonlinear perturbations of the p-Laplacian." Journal of the European Mathematical Society 008.2 (2006): 375-388. <http://eudml.org/doc/277461>.

@article{Mawhin2006,
abstract = {We prove an Ambrosetti–Prodi type result for the periodic solutions of the equation $(|u^\{\prime \}|^\{p−2\}u^\{\prime \}))^\{\prime \}+ f(u)u^\{\prime \}+g(x,u)=t$, when $f$ is arbitrary and $g(x,u)\rightarrow +\infty $ or $g(x,u)\rightarrow −\infty $ when $|u|\rightarrow \infty $. The proof uses upper and lower solutions and the Leray–Schauder degree.},
author = {Mawhin, Jean},
journal = {Journal of the European Mathematical Society},
keywords = {Ambrosetti-Prodi problem; periodic solutions; upper and lower solutions; topological degree; Ambrosetti-Prodi problem; Periodic solutions; upper and lower solutions},
language = {eng},
number = {2},
pages = {375-388},
publisher = {European Mathematical Society Publishing House},
title = {The periodic Ambrosetti-Prodi problem for nonlinear perturbations of the p-Laplacian},
url = {http://eudml.org/doc/277461},
volume = {008},
year = {2006},
}

TY - JOUR
AU - Mawhin, Jean
TI - The periodic Ambrosetti-Prodi problem for nonlinear perturbations of the p-Laplacian
JO - Journal of the European Mathematical Society
PY - 2006
PB - European Mathematical Society Publishing House
VL - 008
IS - 2
SP - 375
EP - 388
AB - We prove an Ambrosetti–Prodi type result for the periodic solutions of the equation $(|u^{\prime }|^{p−2}u^{\prime }))^{\prime }+ f(u)u^{\prime }+g(x,u)=t$, when $f$ is arbitrary and $g(x,u)\rightarrow +\infty $ or $g(x,u)\rightarrow −\infty $ when $|u|\rightarrow \infty $. The proof uses upper and lower solutions and the Leray–Schauder degree.
LA - eng
KW - Ambrosetti-Prodi problem; periodic solutions; upper and lower solutions; topological degree; Ambrosetti-Prodi problem; Periodic solutions; upper and lower solutions
UR - http://eudml.org/doc/277461
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.