The Wolff gradient bound for degenerate parabolic equations

Tuomo Kuusi; Giuseppe Mingione

Journal of the European Mathematical Society (2014)

  • Volume: 016, Issue: 4, page 835-892
  • ISSN: 1435-9855

Abstract

top
The spatial gradient of solutions to non-homogeneous and degenerate parabolic equations of p -Laplacean type can be pointwise estimated by natural Wolff potentials of the right hand side measure.

How to cite

top

Kuusi, Tuomo, and Mingione, Giuseppe. "The Wolff gradient bound for degenerate parabolic equations." Journal of the European Mathematical Society 016.4 (2014): 835-892. <http://eudml.org/doc/277505>.

@article{Kuusi2014,
abstract = {The spatial gradient of solutions to non-homogeneous and degenerate parabolic equations of $p$-Laplacean type can be pointwise estimated by natural Wolff potentials of the right hand side measure.},
author = {Kuusi, Tuomo, Mingione, Giuseppe},
journal = {Journal of the European Mathematical Society},
keywords = {nonlinear potentials; measure data; gradient estimates; degenerate parabolic equations; regularity of solutions; $p$-Laplacian; nonlinear parabolic potentials; degenerate parabolic equations; measures data; regularity of solutions; gradient estimates; -Laplacian},
language = {eng},
number = {4},
pages = {835-892},
publisher = {European Mathematical Society Publishing House},
title = {The Wolff gradient bound for degenerate parabolic equations},
url = {http://eudml.org/doc/277505},
volume = {016},
year = {2014},
}

TY - JOUR
AU - Kuusi, Tuomo
AU - Mingione, Giuseppe
TI - The Wolff gradient bound for degenerate parabolic equations
JO - Journal of the European Mathematical Society
PY - 2014
PB - European Mathematical Society Publishing House
VL - 016
IS - 4
SP - 835
EP - 892
AB - The spatial gradient of solutions to non-homogeneous and degenerate parabolic equations of $p$-Laplacean type can be pointwise estimated by natural Wolff potentials of the right hand side measure.
LA - eng
KW - nonlinear potentials; measure data; gradient estimates; degenerate parabolic equations; regularity of solutions; $p$-Laplacian; nonlinear parabolic potentials; degenerate parabolic equations; measures data; regularity of solutions; gradient estimates; -Laplacian
UR - http://eudml.org/doc/277505
ER -

NotesEmbed ?

top

You must be logged in to post comments.