La teoria di Calderón-Zygmund dal caso lineare a quello non lineare
Bollettino dell'Unione Matematica Italiana (2013)
- Volume: 6, Issue: 2, page 269-297
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topMingione, Giuseppe. "La teoria di Calderón-Zygmund dal caso lineare a quello non lineare." Bollettino dell'Unione Matematica Italiana 6.2 (2013): 269-297. <http://eudml.org/doc/294054>.
@article{Mingione2013,
abstract = {La teoria di Calderón-Zygmund per equazioni ellittiche e paraboliche lineari ammette un analogo non lineare che si è andato man mano delineando sempre più chiaramente negli ultimi anni. Di seguito si discutono alcuni risultati validi in questo ambito.},
author = {Mingione, Giuseppe},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {ita},
month = {6},
number = {2},
pages = {269-297},
publisher = {Unione Matematica Italiana},
title = {La teoria di Calderón-Zygmund dal caso lineare a quello non lineare},
url = {http://eudml.org/doc/294054},
volume = {6},
year = {2013},
}
TY - JOUR
AU - Mingione, Giuseppe
TI - La teoria di Calderón-Zygmund dal caso lineare a quello non lineare
JO - Bollettino dell'Unione Matematica Italiana
DA - 2013/6//
PB - Unione Matematica Italiana
VL - 6
IS - 2
SP - 269
EP - 297
AB - La teoria di Calderón-Zygmund per equazioni ellittiche e paraboliche lineari ammette un analogo non lineare che si è andato man mano delineando sempre più chiaramente negli ultimi anni. Di seguito si discutono alcuni risultati validi in questo ambito.
LA - ita
UR - http://eudml.org/doc/294054
ER -
References
top- ACERBI, E. - MINGIONE, G., Gradient estimates for the -Laplacean system. J. Reine Ang. Math. (Crelles J.), 584 (2005), 117-148. MR2155087DOI10.1515/crll.2005.2005.584.117
- ACERBI, E. - MINGIONE, G., Gradient estimates for a class of parabolic systems. Duke Math. J.136 (2007), 285-320. Zbl1113.35105MR2286632DOI10.1215/S0012-7094-07-13623-8
- ADAMS, D. R., A note on Riesz potentials. Duke Math. J.42 (1975), 765-778. Zbl0336.46038MR458158
- ADAMS, D. R. - HEDBERG, L. I., Function spaces and potential theory. Grundlehren der Mathematischen Wissenschaften314. Springer-Verlag, Berlin, 1996. MR1411441DOI10.1007/978-3-662-03282-4
- ADAMS, D. R. - MEYERS, N. G., Thinnes and Wiener criteria for nonlinear potentials. Indiana Univ. Math. J.22 (1972/73), 169-197. Zbl0244.31012MR316724DOI10.1512/iumj.1972.22.22015
- ADAMS, R. A. - FOURNIER, J. J. F., Sobolev Spaces. Second edition. Pure and Appl. Math.140, Elsevier/Academic Press, Amsterdam, 2003. MR2424078
- BARONI, P. - HABERMANN, J., Calderón-Zygmund estimates for parabolic measure data problems. J. Diff. Equ.252 (2012), 412-447. Zbl1233.35055MR2852212DOI10.1016/j.jde.2011.08.016
- BARONI, P. - HABERMANN, J., New gradient estimates for parabolic equations. Houston J. Math., in stampa. Zbl1263.35050MR2970662
- BÉNILAN, P. - BOCCARDO, L. - GALLOUËT, T. - GARIEPY, R. - PIERRE, M. - VÁZQUEZ, J. L., An -theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (IV), 22 (1995), 241-273. Zbl0866.35037MR1354907
- BOCCARDO, L., Problemi differenziali ellittici e parabolici con dati misure. Boll. UMI A (VII), 11 (1997), 439-461.
- BOCCARDO, L. - GALLOUËT, T., Nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal.87 (1989), 149-169. MR1025884DOI10.1016/0022-1236(89)90005-0
- BOCCARDO, L. - GALLOUËT, T., Nonlinear elliptic equations with right-hand side measures. Comm. Partial Differential Equations, 17 (1992), 641-655. Zbl0812.35043MR1163440DOI10.1080/03605309208820857
- BÖGELEIN, V. - DUZAAR, F. - MINGIONE, G., Degenerate problems with irregular obstacles. J. Reine Angew. Math. (Crelles J.), 650 (2011), 107-160. MR2770559DOI10.1515/CRELLE.2011.006
- BOURGAIN, J. - BREZIS, H., On the equation application to control of phases. J. Amer. Math. Soc.16 (2003), 393-426. Zbl1075.35006MR1949165DOI10.1090/S0894-0347-02-00411-3
- BYUN, S. S. - WANG, L., Gradient estimates for elliptic systems in non-smooth domains. Math. Ann.341 (2008), 629-650. Zbl1143.35095MR2399163DOI10.1007/s00208-008-0207-6
- BYUN, S. S. - WANG, L. - ZHOU, S., Nonlinear elliptic equations with BMO coefficients in Reifenberg domains. J. Funct. Anal.250 (2007), 167-196. Zbl1173.35052MR2345911DOI10.1016/j.jfa.2007.04.021
- CAFFARELLI, L., Elliptic second order equations. Rend. Sem. Mat. Fis. Milano, 58 (1988), 253-284. Zbl0726.35036MR1069735DOI10.1007/BF02925245
- CAFFARELLI, L., Interior a priori estimates for solutions of fully nonlinear equations. Ann. of Math. (II), 130 (1989), 189-213. Zbl0692.35017MR1005611DOI10.2307/1971480
- CAFFARELLI, L. - PERAL, I., On estimates for elliptic equations in divergence form. Comm. Pure Appl. Math.51 (1998), 1-21. MR1486629DOI10.1002/(SICI)1097-0312(199801)51:1<1::AID-CPA1>3.3.CO;2-N
- CALDERÓN, A. P. - ZYGMUND, A., On the existence of certain singular integrals. Acta Math.88 (1952), 85-139. MR52553DOI10.1007/BF02392130
- CALDERÓN, A. P. - ZYGMUND, A., On singular integrals. Amer. J. Math.78 (1956), 289-309. MR84633DOI10.2307/2372517
- CAMPANATO, S. - STAMPACCHIA, G., Sulle maggiorazioni in nella teoria delle equazioni ellittiche. Boll. UMI (III), 20 (1965), 393-399. Zbl0142.37604MR192169
- CIANCHI, A., Nonlinear potentials, local solutions to elliptic equations and rearrangements. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (V), 10 (2011), 335-361. Zbl1235.31009MR2856151
- DAL MASO, G. - MURAT, F. - ORSINA, L. - PRIGNET, A., Renormalized solutions of elliptic equations with general measure data. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (IV), 28 (1999), 741-808. Zbl0958.35045MR1760541
- DIBENEDETTO, E., Degenerate parabolic equations. Universitext. Springer-Verlag, New York, 1993. Zbl0794.35090MR1230384DOI10.1007/978-1-4612-0895-2
- DIBENEDETTO, E. - MANFREDI, J. J., On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems. Amer. J. Math.115 (1993), 1107-1134. Zbl0805.35037MR1246185DOI10.2307/2375066
- DI CASTRO, A., Anisotropic elliptic problems with natural growth terms. Manuscripta Math.135 (2011), 521-543. Zbl1223.35153MR2813447DOI10.1007/s00229-011-0431-3
- DI CASTRO, A. - PALATUCCI, G., Measure data problems, lower order terms and interpolation effects. Ann. Mat. Pura Appl. (IV) DOI: 10.1007/s10231-012-0277-7. Zbl1305.35057MR3180921DOI10.1007/s10231-012-0277-7
- DI CASTRO, A. - PALATUCCI, G., Nonlinear parabolic problems with lower order terms and related integral estimates. Nonlinear Anal.75 (2012), 4177-4197. Zbl1243.35094MR2921981DOI10.1016/j.na.2012.03.007
- DI NEZZA, E. - PALATUCCI, G. - VALDINOCI, E., Hitchhiker's guide to the fractional Sobolev spaces. Bull. Sci. math., in stampa. Zbl1252.46023MR2944369DOI10.1016/j.bulsci.2011.12.004
- DOLZMANN, G. - HUNGERBÜHLER, N. - MÜLLER, S., Uniqueness and maximal regularity for nonlinear elliptic systems of n-Laplace type with measure valued right hand side. J. Reine Angew. Math. (Crelles J.), 520 (2000), 1-35. MR1748270DOI10.1515/crll.2000.022
- DUZAAR, F. - MINGIONE, G., Gradient estimates via non-linear potentials. Amer. J. Math.133 (2011), 1093-1149. Zbl1230.35028MR2823872DOI10.1353/ajm.2011.0023
- DUZAAR, F. - MINGIONE, G., Gradient estimates via linear and nonlinear potentials. J. Funct. Anal.259 (2010), 2961-2998. Zbl1200.35313MR2719282DOI10.1016/j.jfa.2010.08.006
- DUZAAR, F. - MINGIONE, G. - STEFFEN, K., Parabolic systems with polynomial growth and regularity. Mem. Amer. Math. Soc.214, no. 1005 (2011), 128. MR2866816DOI10.1090/S0065-9266-2011-00614-3
- ESCAURIAZA, L., a priori estimates for solutions to fully nonlinear equations. Indiana Univ. Math. J.42 (1993), 413-423. Zbl0792.35020MR1237053DOI10.1512/iumj.1993.42.42019
- FUCHS, M. - REULING, J., Non-linear elliptic systems involving measure data. Rend. Mat. Appl. (7), 15 (1995), 311-319. Zbl0838.35133MR1339247
- GIAQUINTA, M., Multiple integrals in the calculus of variations and nonlinear elliptic systems. Annals of Mathematics Studies, 105. Princeton University Press, Princeton, NJ, 1983. Zbl0516.49003MR717034
- GIUSTI, E., Direct methods in the calculus of variations. World Scientific Publishing Co., Inc., River Edge, NJ, 2003. Zbl1028.49001MR1962933DOI10.1142/9789812795557
- GRECO, L. - IWANIEC, T. - SBORDONE, C., Inverting the p-harmonic operator. Manuscripta Math.92 (1997), 249-258. Zbl0869.35037MR1428651DOI10.1007/BF02678192
- HAVIN, M. - MAZ'YA, V. G., A nonlinear potential theory. Russ. Math. Surveys, 27 (1972), 71-148. MR409858
- HEDBERG, L. I. - WOLFF, T., Thin sets in nonlinear potential theory. Ann. Inst. Fourier (Grenoble), 33 (1983), 161-187. Zbl0508.31008MR727526
- IWANIEC, T., Projections onto gradient fields and -estimates for degenerated elliptic operators. Studia Math.75 (1983), 293-312. Zbl0552.35034MR722254DOI10.4064/sm-75-3-293-312
- IWANIEC, T., p-harmonic tensors and quasiregular mappings. Ann. Math. (II), 136 (1992), 589-624. Zbl0785.30009MR1189867DOI10.2307/2946602
- IWANIEC, T., Nonlinear Cauchy-Riemann operators in . Trans. Amer. Math. Soc.354 (2002), 1961-1995. Zbl1113.35068MR1881026DOI10.1090/S0002-9947-02-02914-8
- IWANIEC, T. - SBORDONE, C., On the integrability of the Jacobian under minimal hypotheses. Arch. Ration. Mech. Anal.119 (1992), 129-143. Zbl0766.46016MR1176362DOI10.1007/BF00375119
- IWANIEC, T. - SBORDONE, C., Weak minima of variational integrals. J. Reine Angew. Math. (Crelle J.), 454 (1994), 143-161. Zbl0802.35016MR1288682DOI10.1515/crll.1994.454.143
- IWANIEC, T. - SBORDONE, C., Riesz transforms and elliptic PDEs with VMO coefficients. J. Anal. Math.74 (1998), 183-212. Zbl0909.35039MR1631658DOI10.1007/BF02819450
- JOHN, F. - NIRENBERG, L., On functions of bounded mean oscillation. Comm. Pure Appl. Math.14 (1961), 415-426. Zbl0102.04302MR131498DOI10.1002/cpa.3160140317
- KICHENASSAMY, S. - VERÓN, L., Singular solutions to the p-Laplace equation. Math. Ann.275 (1986), 599-615. MR859333DOI10.1007/BF01459140
- KILPELÄINEN, T. - KUUSI, T. - TUHOLA-KUJANPÄA, A., Superharmonic functions are locally renormalized solutions. Ann. Inst. H. Poincarè, Anal. Non Lin., 28 (2011), 775-795. Zbl1234.35121MR2859927DOI10.1016/j.anihpc.2011.03.004
- KILPELÄINEN, T. - MALÝ, J., Degenerate elliptic equations with measure data and nonlinear potentials. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (IV), 19 (1992), 591-613. MR1205885
- KILPELÄINEN, T. - MALÝ, J., The Wiener test and potential estimates for quasilinear elliptic equations. Acta Math.172 (1994), 137-161. MR1264000DOI10.1007/BF02392793
- KINNUNEN, J. - LEWIS, J. L., Very weak solutions of parabolic systems of p-Laplacian type. Ark. Mat.40 (2002), 105-132. Zbl1011.35039MR1948889DOI10.1007/BF02384505
- KINNUNEN, J. - ZHOU, S., A local estimate for nonlinear equations with discontinuous coefficients. Comm. Partial Differential Equations, 24 (1999), 2043-2068. Zbl0941.35026MR1720770DOI10.1080/03605309908821494
- KORTE, R. - KUUSI, T., A note on the Wolff potential estimate for solutions to elliptic equations involving measures. Adv. Calc. Var.3 (2010), 99-113. Zbl1182.35222MR2604619DOI10.1515/ACV.2010.005
- KRISTENSEN, J. - MINGIONE, G., The singular set of minima of integral functionals. Arch. Ration. Mech. Anal.180 (2006), 331-398. Zbl1116.49010MR2214961DOI10.1007/s00205-005-0402-5
- KRISTENSEN, J. - MINGIONE, G., Boundary regularity in variational problems. Arch. Ration. Mech. Anal.198 (2010), 369-455. Zbl1228.49043MR2721587DOI10.1007/s00205-010-0294-x
- KUUSI, T. - MINGIONE, G., Universal potential estimates. J. Funct. Anal.262 (2012), 4205-4269. Zbl1252.35097MR2900466DOI10.1016/j.jfa.2012.02.018
- KUUSI, T. - MINGIONE, G., Endpoint and intermediate potential estimates for nonlinear equations. Boll. UMI (IX), 4 (2011), 149-157. Zbl1235.35132MR2797471
- KUUSI, T. - MINGIONE, G., Nonlinear potential estimates in parabolic problems. Rendiconti Lincei, Matematica e Applicazioni, 22 (2011), 161-174. Zbl1227.35105MR2813574DOI10.4171/RLM/593
- KUUSI, T. - MINGIONE, G., The Wolff gradient bound for degenerate parabolic equations. J. Europ. Math. Soc., in stampa. Zbl1303.35120MR3191979DOI10.4171/JEMS/449
- KUUSI, T. - MINGIONE, G., Gradient regularity for nonlinear parabolic equations. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (V), in stampa. Zbl1288.35145MR3184569
- KUUSI, T. - MINGIONE, G., Linear potentials in nonlinear potential theory. Arch. Rat. Mech. Anal.207 (2013), 215-246. Zbl1266.31011MR3004772DOI10.1007/s00205-012-0562-z
- KUUSI, T. - MINGIONE, G., A surprising linear type estimate for nonlinear elliptic equations. C. R. Acad. Sci. Paris, Ser. I, 349 (2011), 889-892. Zbl1226.35026MR2835897DOI10.1016/j.crma.2011.07.025
- LADYZHENSKAYA, O. A. - URAL'TSEVA, N. N., Linear and quasilinear elliptic equations. Academic Press, New York-London1968. MR244627
- LERAY, J. - LIONS, J.-L., Quelques résulatats de Višik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty-Browder. Bull. Soc. Math. France, 93 (1965), 97-107. Zbl0132.10502MR194733
- LEWIS, J. L., On very weak solutions of certain elliptic systems. Comm. Partial Differential Equations, 18 (1993), 1515-1537. Zbl0796.35061MR1239922DOI10.1080/03605309308820984
- LINDQVIST, P., On the definition and properties of p-superharmonic functions. J. Reine Angew. Math. (Crelles J.), 365 (1986), 67-79. Zbl0572.31004MR826152DOI10.1515/crll.1986.365.67
- MAZ'YA, V., The continuity at a boundary point of the solutions of quasi-linear elliptic equations. (Russian), Vestnik Leningrad. Univ.25 (1970), 42-55. MR274948
- MINGIONE, G., The Calderón-Zygmund theory for elliptic problems with measure data. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (V), 6 (2007), 195-261. Zbl1178.35168MR2352517
- MINGIONE, G., Gradient estimates below the duality exponent. Math. Ann.346 (2010), 571-627. Zbl1193.35077MR2578563DOI10.1007/s00208-009-0411-z
- MINGIONE, G., Gradient potential estimates. J. Europ. Math. Soc.13 (2011), 459-486. Zbl1217.35077MR2746772DOI10.4171/JEMS/258
- MINGIONE, G., Regularity of minima: an invitation to the Dark Side of the Calculus of Variations. Applications of Mathematics, 51 (2006), 355-425. Zbl1164.49324MR2291779DOI10.1007/s10778-006-0110-3
- MINGIONE, G., Nonlinear measure data problems. Milan J. Math.79 (2011), 429-496. Zbl1236.35068MR2862024DOI10.1007/s00032-011-0168-1
- PHUC, N. C. - VERBITSKY, I. E., Quasilinear and Hessian equations of Lane-Emden type. Ann. of Math. (II), 168 (2008), 859-914. Zbl1175.31010MR2456885DOI10.4007/annals.2008.168.859
- PHUC, N. C. - VERBITSKY, I. E., Singular quasilinear and Hessian equations and inequalities. J. Funct. Anal.256 (2009), 1875-1906. Zbl1169.35026MR2498563DOI10.1016/j.jfa.2009.01.012
- RIVIÈRE, T., The role of conservation laws in the analysis of conformally invariant problems. In Topics in modern regularity theory (G. Mingione ed.). Sc. Normale Superiore2012. MR2906051DOI10.1007/978-88-7642-427-4
- SCHEVEN, C., Non-linear Calderón-Zygmund theory for parabolic systems with subquadratic growth. J. Evol. Equ.10 (2010), 597-622. Zbl1239.35060MR2674061DOI10.1007/s00028-010-0063-1
- SERRIN, J., Pathological solutions of elliptic differential equations. Ann. Sc. Norm. Sup. Pisa (III), 18 (1964), 385-387. Zbl0142.37601MR170094
- SERRIN, J., Local behavior of solutions of quasi-linear equations. Acta Math.111 (1964), 247-302. Zbl0128.09101MR170096DOI10.1007/BF02391014
- STAMPACCHIA, G., The spaces , and interpolation. Ann. Sc. Norm. Sup. Pisa (III), 19 (1965), 443-462. Zbl0149.09202MR199697
- STAMPACCHIA, G., -spaces and interpolation. Comm. Pure Appl. Math.17 (1964), 293-306. Zbl0149.09201MR178350DOI10.1002/cpa.3160170303
- STEIN, E. M. - WEISS, G., Introduction to Fourier analysis on Euclidean spaces. Princeton Math. Ser., 32. Princeton Univ. Press, Princeton, N.J.1971. Zbl0232.42007MR304972
- ŠVERÁK, V. - YAN, X., Non-Lipschitz minimizers of smooth uniformly convex functionals. Proc. Natl. Acad. Sci. USA, 99/24 (2002), 15269-15276. Zbl1106.49046MR1946762DOI10.1073/pnas.222494699
- TALENTI, G., Elliptic equations and rearrangements. Ann Sc. Norm. Sup. Pisa Cl. Sci. (IV), 3 (1976), 697-717. Zbl0341.35031MR601601
- TRUDINGER, N. S. - WANG, X. J., On the weak continuity of elliptic operators and applications to potential theory. Amer. J. Math.124 (2002), 369-410. Zbl1067.35023MR1890997
- UHLENBECK, K., Regularity for a class of nonlinear elliptic systems. Acta Math.138 (1977), 219-240. Zbl0372.35030MR474389DOI10.1007/BF02392316
- YAO, F., A new approach to Lp estimates for Calderón-Zygmund type singular integrals. Arch. Math. (Basel), 92 (2009), 137-146. MR2481509DOI10.1007/s00013-008-2900-9
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.