La teoria di Calderón-Zygmund dal caso lineare a quello non lineare

Giuseppe Mingione

Bollettino dell'Unione Matematica Italiana (2013)

  • Volume: 6, Issue: 2, page 269-297
  • ISSN: 0392-4041

Abstract

top
La teoria di Calderón-Zygmund per equazioni ellittiche e paraboliche lineari ammette un analogo non lineare che si è andato man mano delineando sempre più chiaramente negli ultimi anni. Di seguito si discutono alcuni risultati validi in questo ambito.

How to cite

top

Mingione, Giuseppe. "La teoria di Calderón-Zygmund dal caso lineare a quello non lineare." Bollettino dell'Unione Matematica Italiana 6.2 (2013): 269-297. <http://eudml.org/doc/294054>.

@article{Mingione2013,
abstract = {La teoria di Calderón-Zygmund per equazioni ellittiche e paraboliche lineari ammette un analogo non lineare che si è andato man mano delineando sempre più chiaramente negli ultimi anni. Di seguito si discutono alcuni risultati validi in questo ambito.},
author = {Mingione, Giuseppe},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {ita},
month = {6},
number = {2},
pages = {269-297},
publisher = {Unione Matematica Italiana},
title = {La teoria di Calderón-Zygmund dal caso lineare a quello non lineare},
url = {http://eudml.org/doc/294054},
volume = {6},
year = {2013},
}

TY - JOUR
AU - Mingione, Giuseppe
TI - La teoria di Calderón-Zygmund dal caso lineare a quello non lineare
JO - Bollettino dell'Unione Matematica Italiana
DA - 2013/6//
PB - Unione Matematica Italiana
VL - 6
IS - 2
SP - 269
EP - 297
AB - La teoria di Calderón-Zygmund per equazioni ellittiche e paraboliche lineari ammette un analogo non lineare che si è andato man mano delineando sempre più chiaramente negli ultimi anni. Di seguito si discutono alcuni risultati validi in questo ambito.
LA - ita
UR - http://eudml.org/doc/294054
ER -

References

top
  1. ACERBI, E. - MINGIONE, G., Gradient estimates for the p ( x ) -Laplacean system. J. Reine Ang. Math. (Crelles J.), 584 (2005), 117-148. MR2155087DOI10.1515/crll.2005.2005.584.117
  2. ACERBI, E. - MINGIONE, G., Gradient estimates for a class of parabolic systems. Duke Math. J.136 (2007), 285-320. Zbl1113.35105MR2286632DOI10.1215/S0012-7094-07-13623-8
  3. ADAMS, D. R., A note on Riesz potentials. Duke Math. J.42 (1975), 765-778. Zbl0336.46038MR458158
  4. ADAMS, D. R. - HEDBERG, L. I., Function spaces and potential theory. Grundlehren der Mathematischen Wissenschaften314. Springer-Verlag, Berlin, 1996. MR1411441DOI10.1007/978-3-662-03282-4
  5. ADAMS, D. R. - MEYERS, N. G., Thinnes and Wiener criteria for nonlinear potentials. Indiana Univ. Math. J.22 (1972/73), 169-197. Zbl0244.31012MR316724DOI10.1512/iumj.1972.22.22015
  6. ADAMS, R. A. - FOURNIER, J. J. F., Sobolev Spaces. Second edition. Pure and Appl. Math.140, Elsevier/Academic Press, Amsterdam, 2003. MR2424078
  7. BARONI, P. - HABERMANN, J., Calderón-Zygmund estimates for parabolic measure data problems. J. Diff. Equ.252 (2012), 412-447. Zbl1233.35055MR2852212DOI10.1016/j.jde.2011.08.016
  8. BARONI, P. - HABERMANN, J., New gradient estimates for parabolic equations. Houston J. Math., in stampa. Zbl1263.35050MR2970662
  9. BÉNILAN, P. - BOCCARDO, L. - GALLOUËT, T. - GARIEPY, R. - PIERRE, M. - VÁZQUEZ, J. L., An L 1 -theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (IV), 22 (1995), 241-273. Zbl0866.35037MR1354907
  10. BOCCARDO, L., Problemi differenziali ellittici e parabolici con dati misure. Boll. UMI A (VII), 11 (1997), 439-461. 
  11. BOCCARDO, L. - GALLOUËT, T., Nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal.87 (1989), 149-169. MR1025884DOI10.1016/0022-1236(89)90005-0
  12. BOCCARDO, L. - GALLOUËT, T., Nonlinear elliptic equations with right-hand side measures. Comm. Partial Differential Equations, 17 (1992), 641-655. Zbl0812.35043MR1163440DOI10.1080/03605309208820857
  13. BÖGELEIN, V. - DUZAAR, F. - MINGIONE, G., Degenerate problems with irregular obstacles. J. Reine Angew. Math. (Crelles J.), 650 (2011), 107-160. MR2770559DOI10.1515/CRELLE.2011.006
  14. BOURGAIN, J. - BREZIS, H., On the equation div Y = f application to control of phases. J. Amer. Math. Soc.16 (2003), 393-426. Zbl1075.35006MR1949165DOI10.1090/S0894-0347-02-00411-3
  15. BYUN, S. S. - WANG, L., Gradient estimates for elliptic systems in non-smooth domains. Math. Ann.341 (2008), 629-650. Zbl1143.35095MR2399163DOI10.1007/s00208-008-0207-6
  16. BYUN, S. S. - WANG, L. - ZHOU, S., Nonlinear elliptic equations with BMO coefficients in Reifenberg domains. J. Funct. Anal.250 (2007), 167-196. Zbl1173.35052MR2345911DOI10.1016/j.jfa.2007.04.021
  17. CAFFARELLI, L., Elliptic second order equations. Rend. Sem. Mat. Fis. Milano, 58 (1988), 253-284. Zbl0726.35036MR1069735DOI10.1007/BF02925245
  18. CAFFARELLI, L., Interior a priori estimates for solutions of fully nonlinear equations. Ann. of Math. (II), 130 (1989), 189-213. Zbl0692.35017MR1005611DOI10.2307/1971480
  19. CAFFARELLI, L. - PERAL, I., On W 1 , p estimates for elliptic equations in divergence form. Comm. Pure Appl. Math.51 (1998), 1-21. MR1486629DOI10.1002/(SICI)1097-0312(199801)51:1<1::AID-CPA1>3.3.CO;2-N
  20. CALDERÓN, A. P. - ZYGMUND, A., On the existence of certain singular integrals. Acta Math.88 (1952), 85-139. MR52553DOI10.1007/BF02392130
  21. CALDERÓN, A. P. - ZYGMUND, A., On singular integrals. Amer. J. Math.78 (1956), 289-309. MR84633DOI10.2307/2372517
  22. CAMPANATO, S. - STAMPACCHIA, G., Sulle maggiorazioni in L p nella teoria delle equazioni ellittiche. Boll. UMI (III), 20 (1965), 393-399. Zbl0142.37604MR192169
  23. CIANCHI, A., Nonlinear potentials, local solutions to elliptic equations and rearrangements. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (V), 10 (2011), 335-361. Zbl1235.31009MR2856151
  24. DAL MASO, G. - MURAT, F. - ORSINA, L. - PRIGNET, A., Renormalized solutions of elliptic equations with general measure data. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (IV), 28 (1999), 741-808. Zbl0958.35045MR1760541
  25. DIBENEDETTO, E., Degenerate parabolic equations. Universitext. Springer-Verlag, New York, 1993. Zbl0794.35090MR1230384DOI10.1007/978-1-4612-0895-2
  26. DIBENEDETTO, E. - MANFREDI, J. J., On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems. Amer. J. Math.115 (1993), 1107-1134. Zbl0805.35037MR1246185DOI10.2307/2375066
  27. DI CASTRO, A., Anisotropic elliptic problems with natural growth terms. Manuscripta Math.135 (2011), 521-543. Zbl1223.35153MR2813447DOI10.1007/s00229-011-0431-3
  28. DI CASTRO, A. - PALATUCCI, G., Measure data problems, lower order terms and interpolation effects. Ann. Mat. Pura Appl. (IV) DOI: 10.1007/s10231-012-0277-7. Zbl1305.35057MR3180921DOI10.1007/s10231-012-0277-7
  29. DI CASTRO, A. - PALATUCCI, G., Nonlinear parabolic problems with lower order terms and related integral estimates. Nonlinear Anal.75 (2012), 4177-4197. Zbl1243.35094MR2921981DOI10.1016/j.na.2012.03.007
  30. DI NEZZA, E. - PALATUCCI, G. - VALDINOCI, E., Hitchhiker's guide to the fractional Sobolev spaces. Bull. Sci. math., in stampa. Zbl1252.46023MR2944369DOI10.1016/j.bulsci.2011.12.004
  31. DOLZMANN, G. - HUNGERBÜHLER, N. - MÜLLER, S., Uniqueness and maximal regularity for nonlinear elliptic systems of n-Laplace type with measure valued right hand side. J. Reine Angew. Math. (Crelles J.), 520 (2000), 1-35. MR1748270DOI10.1515/crll.2000.022
  32. DUZAAR, F. - MINGIONE, G., Gradient estimates via non-linear potentials. Amer. J. Math.133 (2011), 1093-1149. Zbl1230.35028MR2823872DOI10.1353/ajm.2011.0023
  33. DUZAAR, F. - MINGIONE, G., Gradient estimates via linear and nonlinear potentials. J. Funct. Anal.259 (2010), 2961-2998. Zbl1200.35313MR2719282DOI10.1016/j.jfa.2010.08.006
  34. DUZAAR, F. - MINGIONE, G. - STEFFEN, K., Parabolic systems with polynomial growth and regularity. Mem. Amer. Math. Soc.214, no. 1005 (2011), 128. MR2866816DOI10.1090/S0065-9266-2011-00614-3
  35. ESCAURIAZA, L., W 2 , n a priori estimates for solutions to fully nonlinear equations. Indiana Univ. Math. J.42 (1993), 413-423. Zbl0792.35020MR1237053DOI10.1512/iumj.1993.42.42019
  36. FUCHS, M. - REULING, J., Non-linear elliptic systems involving measure data. Rend. Mat. Appl. (7), 15 (1995), 311-319. Zbl0838.35133MR1339247
  37. GIAQUINTA, M., Multiple integrals in the calculus of variations and nonlinear elliptic systems. Annals of Mathematics Studies, 105. Princeton University Press, Princeton, NJ, 1983. Zbl0516.49003MR717034
  38. GIUSTI, E., Direct methods in the calculus of variations. World Scientific Publishing Co., Inc., River Edge, NJ, 2003. Zbl1028.49001MR1962933DOI10.1142/9789812795557
  39. GRECO, L. - IWANIEC, T. - SBORDONE, C., Inverting the p-harmonic operator. Manuscripta Math.92 (1997), 249-258. Zbl0869.35037MR1428651DOI10.1007/BF02678192
  40. HAVIN, M. - MAZ'YA, V. G., A nonlinear potential theory. Russ. Math. Surveys, 27 (1972), 71-148. MR409858
  41. HEDBERG, L. I. - WOLFF, T., Thin sets in nonlinear potential theory. Ann. Inst. Fourier (Grenoble), 33 (1983), 161-187. Zbl0508.31008MR727526
  42. IWANIEC, T., Projections onto gradient fields and L p -estimates for degenerated elliptic operators. Studia Math.75 (1983), 293-312. Zbl0552.35034MR722254DOI10.4064/sm-75-3-293-312
  43. IWANIEC, T., p-harmonic tensors and quasiregular mappings. Ann. Math. (II), 136 (1992), 589-624. Zbl0785.30009MR1189867DOI10.2307/2946602
  44. IWANIEC, T., Nonlinear Cauchy-Riemann operators in n . Trans. Amer. Math. Soc.354 (2002), 1961-1995. Zbl1113.35068MR1881026DOI10.1090/S0002-9947-02-02914-8
  45. IWANIEC, T. - SBORDONE, C., On the integrability of the Jacobian under minimal hypotheses. Arch. Ration. Mech. Anal.119 (1992), 129-143. Zbl0766.46016MR1176362DOI10.1007/BF00375119
  46. IWANIEC, T. - SBORDONE, C., Weak minima of variational integrals. J. Reine Angew. Math. (Crelle J.), 454 (1994), 143-161. Zbl0802.35016MR1288682DOI10.1515/crll.1994.454.143
  47. IWANIEC, T. - SBORDONE, C., Riesz transforms and elliptic PDEs with VMO coefficients. J. Anal. Math.74 (1998), 183-212. Zbl0909.35039MR1631658DOI10.1007/BF02819450
  48. JOHN, F. - NIRENBERG, L., On functions of bounded mean oscillation. Comm. Pure Appl. Math.14 (1961), 415-426. Zbl0102.04302MR131498DOI10.1002/cpa.3160140317
  49. KICHENASSAMY, S. - VERÓN, L., Singular solutions to the p-Laplace equation. Math. Ann.275 (1986), 599-615. MR859333DOI10.1007/BF01459140
  50. KILPELÄINEN, T. - KUUSI, T. - TUHOLA-KUJANPÄA, A., Superharmonic functions are locally renormalized solutions. Ann. Inst. H. Poincarè, Anal. Non Lin., 28 (2011), 775-795. Zbl1234.35121MR2859927DOI10.1016/j.anihpc.2011.03.004
  51. KILPELÄINEN, T. - MALÝ, J., Degenerate elliptic equations with measure data and nonlinear potentials. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (IV), 19 (1992), 591-613. MR1205885
  52. KILPELÄINEN, T. - MALÝ, J., The Wiener test and potential estimates for quasilinear elliptic equations. Acta Math.172 (1994), 137-161. MR1264000DOI10.1007/BF02392793
  53. KINNUNEN, J. - LEWIS, J. L., Very weak solutions of parabolic systems of p-Laplacian type. Ark. Mat.40 (2002), 105-132. Zbl1011.35039MR1948889DOI10.1007/BF02384505
  54. KINNUNEN, J. - ZHOU, S., A local estimate for nonlinear equations with discontinuous coefficients. Comm. Partial Differential Equations, 24 (1999), 2043-2068. Zbl0941.35026MR1720770DOI10.1080/03605309908821494
  55. KORTE, R. - KUUSI, T., A note on the Wolff potential estimate for solutions to elliptic equations involving measures. Adv. Calc. Var.3 (2010), 99-113. Zbl1182.35222MR2604619DOI10.1515/ACV.2010.005
  56. KRISTENSEN, J. - MINGIONE, G., The singular set of minima of integral functionals. Arch. Ration. Mech. Anal.180 (2006), 331-398. Zbl1116.49010MR2214961DOI10.1007/s00205-005-0402-5
  57. KRISTENSEN, J. - MINGIONE, G., Boundary regularity in variational problems. Arch. Ration. Mech. Anal.198 (2010), 369-455. Zbl1228.49043MR2721587DOI10.1007/s00205-010-0294-x
  58. KUUSI, T. - MINGIONE, G., Universal potential estimates. J. Funct. Anal.262 (2012), 4205-4269. Zbl1252.35097MR2900466DOI10.1016/j.jfa.2012.02.018
  59. KUUSI, T. - MINGIONE, G., Endpoint and intermediate potential estimates for nonlinear equations. Boll. UMI (IX), 4 (2011), 149-157. Zbl1235.35132MR2797471
  60. KUUSI, T. - MINGIONE, G., Nonlinear potential estimates in parabolic problems. Rendiconti Lincei, Matematica e Applicazioni, 22 (2011), 161-174. Zbl1227.35105MR2813574DOI10.4171/RLM/593
  61. KUUSI, T. - MINGIONE, G., The Wolff gradient bound for degenerate parabolic equations. J. Europ. Math. Soc., in stampa. Zbl1303.35120MR3191979DOI10.4171/JEMS/449
  62. KUUSI, T. - MINGIONE, G., Gradient regularity for nonlinear parabolic equations. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (V), in stampa. Zbl1288.35145MR3184569
  63. KUUSI, T. - MINGIONE, G., Linear potentials in nonlinear potential theory. Arch. Rat. Mech. Anal.207 (2013), 215-246. Zbl1266.31011MR3004772DOI10.1007/s00205-012-0562-z
  64. KUUSI, T. - MINGIONE, G., A surprising linear type estimate for nonlinear elliptic equations. C. R. Acad. Sci. Paris, Ser. I, 349 (2011), 889-892. Zbl1226.35026MR2835897DOI10.1016/j.crma.2011.07.025
  65. LADYZHENSKAYA, O. A. - URAL'TSEVA, N. N., Linear and quasilinear elliptic equations. Academic Press, New York-London1968. MR244627
  66. LERAY, J. - LIONS, J.-L., Quelques résulatats de Višik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty-Browder. Bull. Soc. Math. France, 93 (1965), 97-107. Zbl0132.10502MR194733
  67. LEWIS, J. L., On very weak solutions of certain elliptic systems. Comm. Partial Differential Equations, 18 (1993), 1515-1537. Zbl0796.35061MR1239922DOI10.1080/03605309308820984
  68. LINDQVIST, P., On the definition and properties of p-superharmonic functions. J. Reine Angew. Math. (Crelles J.), 365 (1986), 67-79. Zbl0572.31004MR826152DOI10.1515/crll.1986.365.67
  69. MAZ'YA, V., The continuity at a boundary point of the solutions of quasi-linear elliptic equations. (Russian), Vestnik Leningrad. Univ.25 (1970), 42-55. MR274948
  70. MINGIONE, G., The Calderón-Zygmund theory for elliptic problems with measure data. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (V), 6 (2007), 195-261. Zbl1178.35168MR2352517
  71. MINGIONE, G., Gradient estimates below the duality exponent. Math. Ann.346 (2010), 571-627. Zbl1193.35077MR2578563DOI10.1007/s00208-009-0411-z
  72. MINGIONE, G., Gradient potential estimates. J. Europ. Math. Soc.13 (2011), 459-486. Zbl1217.35077MR2746772DOI10.4171/JEMS/258
  73. MINGIONE, G., Regularity of minima: an invitation to the Dark Side of the Calculus of Variations. Applications of Mathematics, 51 (2006), 355-425. Zbl1164.49324MR2291779DOI10.1007/s10778-006-0110-3
  74. MINGIONE, G., Nonlinear measure data problems. Milan J. Math.79 (2011), 429-496. Zbl1236.35068MR2862024DOI10.1007/s00032-011-0168-1
  75. PHUC, N. C. - VERBITSKY, I. E., Quasilinear and Hessian equations of Lane-Emden type. Ann. of Math. (II), 168 (2008), 859-914. Zbl1175.31010MR2456885DOI10.4007/annals.2008.168.859
  76. PHUC, N. C. - VERBITSKY, I. E., Singular quasilinear and Hessian equations and inequalities. J. Funct. Anal.256 (2009), 1875-1906. Zbl1169.35026MR2498563DOI10.1016/j.jfa.2009.01.012
  77. RIVIÈRE, T., The role of conservation laws in the analysis of conformally invariant problems. In Topics in modern regularity theory (G. Mingione ed.). Sc. Normale Superiore2012. MR2906051DOI10.1007/978-88-7642-427-4
  78. SCHEVEN, C., Non-linear Calderón-Zygmund theory for parabolic systems with subquadratic growth. J. Evol. Equ.10 (2010), 597-622. Zbl1239.35060MR2674061DOI10.1007/s00028-010-0063-1
  79. SERRIN, J., Pathological solutions of elliptic differential equations. Ann. Sc. Norm. Sup. Pisa (III), 18 (1964), 385-387. Zbl0142.37601MR170094
  80. SERRIN, J., Local behavior of solutions of quasi-linear equations. Acta Math.111 (1964), 247-302. Zbl0128.09101MR170096DOI10.1007/BF02391014
  81. STAMPACCHIA, G., The spaces ( p , λ ) , N ( p , λ ) and interpolation. Ann. Sc. Norm. Sup. Pisa (III), 19 (1965), 443-462. Zbl0149.09202MR199697
  82. STAMPACCHIA, G., ( p , λ ) -spaces and interpolation. Comm. Pure Appl. Math.17 (1964), 293-306. Zbl0149.09201MR178350DOI10.1002/cpa.3160170303
  83. STEIN, E. M. - WEISS, G., Introduction to Fourier analysis on Euclidean spaces. Princeton Math. Ser., 32. Princeton Univ. Press, Princeton, N.J.1971. Zbl0232.42007MR304972
  84. ŠVERÁK, V. - YAN, X., Non-Lipschitz minimizers of smooth uniformly convex functionals. Proc. Natl. Acad. Sci. USA, 99/24 (2002), 15269-15276. Zbl1106.49046MR1946762DOI10.1073/pnas.222494699
  85. TALENTI, G., Elliptic equations and rearrangements. Ann Sc. Norm. Sup. Pisa Cl. Sci. (IV), 3 (1976), 697-717. Zbl0341.35031MR601601
  86. TRUDINGER, N. S. - WANG, X. J., On the weak continuity of elliptic operators and applications to potential theory. Amer. J. Math.124 (2002), 369-410. Zbl1067.35023MR1890997
  87. UHLENBECK, K., Regularity for a class of nonlinear elliptic systems. Acta Math.138 (1977), 219-240. Zbl0372.35030MR474389DOI10.1007/BF02392316
  88. YAO, F., A new approach to Lp estimates for Calderón-Zygmund type singular integrals. Arch. Math. (Basel), 92 (2009), 137-146. MR2481509DOI10.1007/s00013-008-2900-9

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.