# Right coideal subalgebras of ${U}_{q}^{+}\left({\mathrm{\U0001d530\U0001d52c}}_{2n+1}\right)$

Journal of the European Mathematical Society (2011)

- Volume: 013, Issue: 6, page 1677-1735
- ISSN: 1435-9855

## Access Full Article

top## Abstract

top## How to cite

topKharchenko, V. K.. "Right coideal subalgebras of $U_q^+(\mathfrak {so}_{2n+1})$." Journal of the European Mathematical Society 013.6 (2011): 1677-1735. <http://eudml.org/doc/277549>.

@article{Kharchenko2011,

abstract = {We give a complete classification of right coideal subalgebras that contain all grouplike elements for the quantum group $U_q^+(\mathfrak \{so\}_\{2n+1\})$ provided that $q$ is not a root of 1. If $q$ has a finite multiplicative order $t>4$; this classification remains valid for homogeneous right coideal subalgebras
of the Frobenius–Lusztig kernel $u_q^+(\mathfrak \{so\}_\{2n+1\})$. In particular, the total number of right coideal
subalgebras that contain the coradical equals $(2n)!!$; the order of the Weyl group defined by the root system of type $B_n$.},

author = {Kharchenko, V. K.},

journal = {Journal of the European Mathematical Society},

keywords = {coideal subalgebra; Hopf algebra; PBW-basis; coideal subalgebras; Hopf algebras; quantum groups; PBW basis; Frobenius kernels},

language = {eng},

number = {6},

pages = {1677-1735},

publisher = {European Mathematical Society Publishing House},

title = {Right coideal subalgebras of $U_q^+(\mathfrak \{so\}_\{2n+1\})$},

url = {http://eudml.org/doc/277549},

volume = {013},

year = {2011},

}

TY - JOUR

AU - Kharchenko, V. K.

TI - Right coideal subalgebras of $U_q^+(\mathfrak {so}_{2n+1})$

JO - Journal of the European Mathematical Society

PY - 2011

PB - European Mathematical Society Publishing House

VL - 013

IS - 6

SP - 1677

EP - 1735

AB - We give a complete classification of right coideal subalgebras that contain all grouplike elements for the quantum group $U_q^+(\mathfrak {so}_{2n+1})$ provided that $q$ is not a root of 1. If $q$ has a finite multiplicative order $t>4$; this classification remains valid for homogeneous right coideal subalgebras
of the Frobenius–Lusztig kernel $u_q^+(\mathfrak {so}_{2n+1})$. In particular, the total number of right coideal
subalgebras that contain the coradical equals $(2n)!!$; the order of the Weyl group defined by the root system of type $B_n$.

LA - eng

KW - coideal subalgebra; Hopf algebra; PBW-basis; coideal subalgebras; Hopf algebras; quantum groups; PBW basis; Frobenius kernels

UR - http://eudml.org/doc/277549

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.