Displaying similar documents to “Right coideal subalgebras of U q + ( 𝔰𝔬 2 n + 1 )

C * -basic construction between non-balanced quantum doubles

Qiaoling Xin, Tianqing Cao (2024)

Czechoslovak Mathematical Journal

Similarity:

For finite groups X , G and the right G -action on X by group automorphisms, the non-balanced quantum double D ( X ; G ) is defined as the crossed product ( X op ) * G . We firstly prove that D ( X ; G ) is a finite-dimensional Hopf C * -algebra. For any subgroup H of G , D ( X ; H ) can be defined as a Hopf C * -subalgebra of D ( X ; G ) in the natural way. Then there is a conditonal expectation from D ( X ; G ) onto D ( X ; H ) and the index is [ G ; H ] . Moreover, we prove that an associated natural inclusion of non-balanced quantum doubles is the crossed product by the...

The basic construction from the conditional expectation on the quantum double of a finite group

Qiaoling Xin, Lining Jiang, Zhenhua Ma (2015)

Czechoslovak Mathematical Journal

Similarity:

Let G be a finite group and H a subgroup. Denote by D ( G ; H ) (or D ( G ) ) the crossed product of C ( G ) and H (or G ) with respect to the adjoint action of the latter on the former. Consider the algebra D ( G ) , e generated by D ( G ) and e , where we regard E as an idempotent operator e on D ( G ) for a certain conditional expectation E of D ( G ) onto D ( G ; H ) . Let us call D ( G ) , e the basic construction from the conditional expectation E : D ( G ) D ( G ; H ) . The paper constructs a crossed product algebra C ( G / H × G ) G , and proves that there is an algebra isomorphism between...

The bicrossed products of H 4 and H 8

Daowei Lu, Yan Ning, Dingguo Wang (2020)

Czechoslovak Mathematical Journal

Similarity:

Let H 4 and H 8 be the Sweedler’s and Kac-Paljutkin Hopf algebras, respectively. We prove that any Hopf algebra which factorizes through H 8 and H 4 (equivalently, any bicrossed product between the Hopf algebras H 8 and H 4 ) must be isomorphic to one of the following four Hopf algebras: H 8 H 4 , H 32 , 1 , H 32 , 2 , H 32 , 3 . The set of all matched pairs ( H 8 , H 4 , , ) is explicitly described, and then the associated bicrossed product is given by generators and relations.

Cluster ensembles, quantization and the dilogarithm

Vladimir V. Fock, Alexander B. Goncharov (2009)

Annales scientifiques de l'École Normale Supérieure

Similarity:

A cluster ensemble is a pair ( 𝒳 , 𝒜 ) of positive spaces (i.e. varieties equipped with positive atlases), coming with an action of a symmetry group Γ . The space 𝒜 is closely related to the spectrum of a cluster algebra [12]. The two spaces are related by a morphism p : 𝒜 𝒳 . The space 𝒜 is equipped with a closed 2 -form, possibly degenerate, and the space 𝒳 has a Poisson structure. The map p is compatible with these structures. The dilogarithm together with its motivic and quantum avatars plays a central...

Cambrian fans

Nathan Reading, David E. Speyer (2009)

Journal of the European Mathematical Society

Similarity:

For a finite Coxeter group W and a Coxeter element c of W ; the c -Cambrian fan is a coarsening of the fan defined by the reflecting hyperplanes of W . Its maximal cones are naturally indexed by the c -sortable elements of W . The main result of this paper is that the known bijection cl c between c -sortable elements and c -clusters induces a combinatorial isomorphism of fans. In particular, the c -Cambrian fan is combinatorially isomorphic to the normal fan of the generalized associahedron for...

Σ s -products revisited

Reynaldo Rojas-Hernández (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We show that any Σ s -product of at most 𝔠 -many L Σ ( ω ) -spaces has the L Σ ( ω ) -property. This result generalizes some known results about L Σ ( ω ) -spaces. On the other hand, we prove that every Σ s -product of monotonically monolithic spaces is monotonically monolithic, and in a similar form, we show that every Σ s -product of Collins-Roscoe spaces has the Collins-Roscoe property. These results generalize some known results about the Collins-Roscoe spaces and answer some questions due to Tkachuk [Lifting the Collins-Roscoe...

C * -points vs P -points and P -points

Jorge Martinez, Warren Wm. McGovern (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

In a Tychonoff space X , the point p X is called a C * -point if every real-valued continuous function on C { p } can be extended continuously to p . Every point in an extremally disconnected space is a C * -point. A classic example is the space 𝐖 * = ω 1 + 1 consisting of the countable ordinals together with ω 1 . The point ω 1 is known to be a C * -point as well as a P -point. We supply a characterization of C * -points in totally ordered spaces. The remainder of our time is aimed at studying when a point in a product space...

Generalized versions of Ilmanen lemma: Insertion of C 1 , ω or C loc 1 , ω functions

Václav Kryštof (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We prove that for a normed linear space X , if f 1 : X is continuous and semiconvex with modulus ω , f 2 : X is continuous and semiconcave with modulus ω and f 1 f 2 , then there exists f C 1 , ω ( X ) such that f 1 f f 2 . Using this result we prove a generalization of Ilmanen lemma (which deals with the case ω ( t ) = t ) to the case of an arbitrary nontrivial modulus ω . This generalization (where a C l o c 1 , ω function is inserted) gives a positive answer to a problem formulated by A. Fathi and M. Zavidovique in 2010.

A localization property for B p q s and F p q s spaces

Hans Triebel (1994)

Studia Mathematica

Similarity:

Let f j = k a k f ( 2 j + 1 x - 2 k ) , where the sum is taken over the lattice of all points k in n having integer-valued components, j∈ℕ and a k . Let A p q s be either B p q s or F p q s (s ∈ ℝ, 0 < p < ∞, 0 < q ≤ ∞) on n . The aim of the paper is to clarify under what conditions f j | A p q s is equivalent to 2 j ( s - n / p ) ( k | a k | p ) 1 / p f | A p q s .

Enveloping algebras of Slodowy slices and the Joseph ideal

Alexander Premet (2007)

Journal of the European Mathematical Society

Similarity:

Let G be a simple algebraic group over an algebraically closed field 𝕜 of characteristic 0, and 𝔤 = Lie G . Let ( e , h , f ) be an 𝔰 𝔩 2 -triple in 𝔤 with e being a long root vector in 𝔤 . Let ( · , · ) be the G -invariant bilinear form on 𝔤 with ( e , f ) = 1 and let χ 𝔤 * be such that χ ( x ) = ( e , x ) for all x 𝔤 . Let 𝒮 be the Slodowy slice at e through the adjoint orbit of e and let H be the enveloping algebra of 𝒮 ; see [31]. In this article we give an explicit presentation of H by generators and relations. As a consequence we deduce that H contains...

On the Configuration Spaces of Grassmannian Manifolds

Sandro Manfredini, Simona Settepanella (2014)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

Let h i ( k , n ) be the i -th ordered configuration space of all distinct points H 1 , ... , H h in the Grassmannian G r ( k , n ) of k -dimensional subspaces of n , whose sum is a subspace of dimension i . We prove that h i ( k , n ) is (when non empty) a complex submanifold of G r ( k , n ) h of dimension i ( n - i ) + h k ( i - k ) and its fundamental group is trivial if i = m i n ( n , h k ) , h k n and n &gt; 2 and equal to the braid group of the sphere P 1 if n = 2 . Eventually we compute the fundamental group in the special case of hyperplane arrangements, i.e. k = n - 1 .