Full convergence of the proximal point method for quasiconvex functions on Hadamard manifolds
Erik A. Papa Quiroz; P. Roberto Oliveira
ESAIM: Control, Optimisation and Calculus of Variations (2012)
- Volume: 18, Issue: 2, page 483-500
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- P.A. Absil, R. Mahony and B. Andrews, Convergence of the iterates of descent methods for analytic cost function. SIAM J. Optim.16 (2005) 531–547.
- F. Alvarez, J. Bolte and O. Brahic, Hessian Riemannian gradient flows in convex programming. SIAM J. Optim.43 (2004) 477–501.
- H. Attouch and J. Bolte, On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. Math. Program. B116 (2009) 5–16.
- H. Attouch and A. Soubeyran, “Worthwhile-to-move” behaviors as temporary satisficing without too many sacrificing processes. Preprint arXiv:0905.1238 (2009).
- H. Attouch and M. Teboulle, Regularized Lotka-Volterra dynamical system as continuous proximal-like method in optimization. J. Optim. Theory Appl.121 (2004) 541–580.
- W. Ballmann, Lectures on Spaces of Nonpositive Curvature. Birkhäuser, Basel (1995).
- N. Barron and W. Liu, Calculus of variation l∞. Appl. Math. Opt.35 (1997) 237–263.
- A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization : Analysis and Engineering Applications, MPS/SIAM Series on Optimization2. SIAM (2001).
- S. Boyd and L. Vanderberghe, Convex Optimization. Cambridge University Press, Cambridge (2004).
- M.R. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature. Springer-Verlag, Berlin (1999).
- J.S. Chen and S.S.H. Pan, Proximal-like algorithm for a class of nonconvex programming. Pacific Journal of Optimization4 (2008) 319–333.
- G.F.M. Cunha, J.X. da Cruz Neto, and P.R. liveira, A proximal point algorithm with φ-divergence to quasiconvex programming. Optimization59 (2010) 777–792.
- J.X. da Cruz Neto, O.P. Ferreira, L. Lucambio Perez and S.Z. Németh, Convex-and monotone-transformable mathematical programming and a proximal-like point method. J. Glob. Optim.35 (2006) 53–69.
- M.P. do Carmo, Riemannian Geometry. Birkhäuser, Boston (1992).
- P.B. Eberlein, Geometry of Nonpositively Curved Manifolds. University of Chicago Press, Chicago (1996).
- O.P. Ferreira and P.R. Oliveira, Proximal point algorithm on Riemannian manifolds. Optimization51 (2002) 257–270.
- J. Gromicho, Quasiconvex Optimization and Location Theory. Kluwer Academic Publishers, Dordrecht (1998).
- J. Jost, Non Positive Curvature : Geometric and Analytic Aspects. Lectures in Mathematics, Base; Boston, Birkhäuser (1997).
- A. Kaplan and R. Tichatschke, Proximal point methods and nonconvex optimization. J. Glob. Optim.13 (1998) 389–406.
- K.C. Kiwiel, Convergence and efficiency of subgradient methods for quasiconvex minimization. Math. Program. A90 (2001) 1–25.
- B. Martinet, Brève communication. Régularisation d’inéquations variationelles par approximations successives. Revue Française D’Informatique et de Recherche Opérationelle4 (1970) 154–158.
- Y.E. Nesterov and M.J. Todd, On the Riemannian geometry defined by self-concordant barrier and interior-point methods. Found. Comput. Math.2 (2002) 333–361.
- S.H. Pan and J.S. Chen, Entropy-like proximal algorithms based on a second-order homogeneous distances function for quasiconvex programming. J. Glob. Optim.39 (2007) 555–575.
- E.A. Papa Quiroz and P.R. Oliveira, New Results on Linear Optimization Through Diagonal Metrics and Riemannian Geometry Tools. Technical Report, ES-645/04, PESC COPPE, Federal University of Rio de Janeiro (2004).
- E.A. Papa Quiroz and P.R. Oliveira, A new self-concordant barrier for the hypercube. J. Optim. Theory Appl.135 (2007) 475–490.
- E.A. Papa Quiroz and P.R. Oliveira, Proximal point methods for quasiconvex and convex functions with Bregman distances on Hadamard manifolds. J. Convex Anal.16 (2009) 46–69.
- T. Rapcsák, Smooth Nonlinear Optimization. Kluwer Academic Publishers (1997).
- O.S. Rothaus, Domains of positivity. Abh. Math. Sem. Univ. Hamburg24 (1960) 189–235.
- R.T. Rockafellar, Monotone operations and the proximal point method. SIAM J. Control Optim.14 (1976) 877–898.
- R.T. Rockafellar and R. Wets, Variational Analysis, Grundlehren der Mathematischen, Wissenschaften317. Springer (1990).
- T. Sakai, Riemannian Geometry. American Mathematical Society, Providence, RI (1996).
- S.S. Souza, P.R. Oliveira, J.X. da Cruz Neto and A. Soubeyran, A proximal method with separable Bregman distance for quasiconvex minimization on the nonnegative orthant. Eur. J. Oper. Res.201 (2010) 365–376.
- A. Takayama, Mathematical Economics, 2nd Edition. Cambrigde University Press, Cambridge (1995).
- P. Tseng, Convergence of a block coordinate descent method for nondifferentiable minimization. J. Optim. Theory Appl.109 (2001) 475–494.
- C. Udriste, Convex Function and Optimization Methods on Riemannian Manifolds. Kluwer Academic Publishers (1994).
- H. Wolkowicz, R. Saigal and L. Vanderberge, Eds., Handbook of Semidefinite Programming Theory, Algorithms and Applications, 1st Edition. Internat. Ser. Oper. Management Sci., Springer (2005).