A ternary Diophantine inequality over primes

Roger Baker; Andreas Weingartner

Acta Arithmetica (2014)

  • Volume: 162, Issue: 2, page 159-196
  • ISSN: 0065-1036

Abstract

top
Let 1 < c < 10/9. For large real numbers R > 0, and a small constant η > 0, the inequality | p c + p c + p c - R | < R - η holds for many prime triples. This improves work of Kumchev [Acta Arith. 89 (1999)].

How to cite

top

Roger Baker, and Andreas Weingartner. "A ternary Diophantine inequality over primes." Acta Arithmetica 162.2 (2014): 159-196. <http://eudml.org/doc/279105>.

@article{RogerBaker2014,
abstract = {Let 1 < c < 10/9. For large real numbers R > 0, and a small constant η > 0, the inequality $|p₁^c+p₂^c+p₃^c - R| < R^\{-η\}$ holds for many prime triples. This improves work of Kumchev [Acta Arith. 89 (1999)].},
author = {Roger Baker, Andreas Weingartner},
journal = {Acta Arithmetica},
keywords = {diophantine inequalities; exponential sums with monomials; alternative sieve; Davenport-Heilbronn method},
language = {eng},
number = {2},
pages = {159-196},
title = {A ternary Diophantine inequality over primes},
url = {http://eudml.org/doc/279105},
volume = {162},
year = {2014},
}

TY - JOUR
AU - Roger Baker
AU - Andreas Weingartner
TI - A ternary Diophantine inequality over primes
JO - Acta Arithmetica
PY - 2014
VL - 162
IS - 2
SP - 159
EP - 196
AB - Let 1 < c < 10/9. For large real numbers R > 0, and a small constant η > 0, the inequality $|p₁^c+p₂^c+p₃^c - R| < R^{-η}$ holds for many prime triples. This improves work of Kumchev [Acta Arith. 89 (1999)].
LA - eng
KW - diophantine inequalities; exponential sums with monomials; alternative sieve; Davenport-Heilbronn method
UR - http://eudml.org/doc/279105
ER -

NotesEmbed ?

top

You must be logged in to post comments.