Quadratic polynomials, period polynomials, and Hecke operators
Acta Arithmetica (2013)
- Volume: 158, Issue: 3, page 287-297
 - ISSN: 0065-1036
 
Access Full Article
topAbstract
topHow to cite
topMarie Jameson, and Wissam Raji. "Quadratic polynomials, period polynomials, and Hecke operators." Acta Arithmetica 158.3 (2013): 287-297. <http://eudml.org/doc/279134>.
@article{MarieJameson2013,
	abstract = {For any non-square 1 < D ≡ 0,1 (mod 4), Zagier defined $F_\{k\}(D;x) :=∑_\{\begin\{array\}\{c\}a,b,c ∈ ℤ, a <0\\ b^2-4ac=D\end\{array\}\} max(0,(ax^2+bx+c)^\{k-1\})$. Here we use the theory of periods to give identities and congruences which relate various values of $F_k(D;x)$.},
	author = {Marie Jameson, Wissam Raji},
	journal = {Acta Arithmetica},
	keywords = {period polynomials; quadratic polynomials},
	language = {eng},
	number = {3},
	pages = {287-297},
	title = {Quadratic polynomials, period polynomials, and Hecke operators},
	url = {http://eudml.org/doc/279134},
	volume = {158},
	year = {2013},
}
TY  - JOUR
AU  - Marie Jameson
AU  - Wissam Raji
TI  - Quadratic polynomials, period polynomials, and Hecke operators
JO  - Acta Arithmetica
PY  - 2013
VL  - 158
IS  - 3
SP  - 287
EP  - 297
AB  - For any non-square 1 < D ≡ 0,1 (mod 4), Zagier defined $F_{k}(D;x) :=∑_{\begin{array}{c}a,b,c ∈ ℤ, a <0\\ b^2-4ac=D\end{array}} max(0,(ax^2+bx+c)^{k-1})$. Here we use the theory of periods to give identities and congruences which relate various values of $F_k(D;x)$.
LA  - eng
KW  - period polynomials; quadratic polynomials
UR  - http://eudml.org/doc/279134
ER  - 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.