Displaying similar documents to “Quadratic polynomials, period polynomials, and Hecke operators”

Recurrences for the coefficients of series expansions with respect to classical orthogonal polynomials

Stanislaw Lewanowicz (2002)

Applicationes Mathematicae

Similarity:

Let P k be any sequence of classical orthogonal polynomials. Further, let f be a function satisfying a linear differential equation with polynomial coefficients. We give an algorithm to construct, in a compact form, a recurrence relation satisfied by the coefficients a k in f = k a k P k . A systematic use of the basic properties (including some nonstandard ones) of the polynomials P k results in obtaining a low order of the recurrence.

A formula for Jack polynomials of the second order

Francisco J. Caro-Lopera, José A. Díaz-García, Graciela González-Farías (2007)

Applicationes Mathematicae

Similarity:

This work solves the partial differential equation for Jack polynomials C κ α of the second order. When the parameter α of the solution takes the values 1/2, 1 and 2 we get explicit formulas for the quaternionic, complex and real zonal polynomials of the second order, respectively.

A Green's function for θ-incomplete polynomials

Joe Callaghan (2007)

Annales Polonici Mathematici

Similarity:

Let K be any subset of N . We define a pluricomplex Green’s function V K , θ for θ-incomplete polynomials. We establish properties of V K , θ analogous to those of the weighted pluricomplex Green’s function. When K is a regular compact subset of N , we show that every continuous function that can be approximated uniformly on K by θ-incomplete polynomials, must vanish on K s u p p ( d d c V K , θ ) N . We prove a version of Siciak’s theorem and a comparison theorem for θ-incomplete polynomials. We compute s u p p ( d d c V K , θ ) N when K is a compact...

Estimates for polynomials in the unit disk with varying constant terms

Stephan Ruscheweyh, Magdalena Wołoszkiewicz (2011)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

Let · be the uniform norm in the unit disk. We study the quantities M n ( α ) : = inf ( z P ( z ) + α - α ) where the infimum is taken over all polynomials P of degree n - 1 with P ( z ) = 1 and α > 0 . In a recent paper by Fournier, Letac and Ruscheweyh (Math. Nachrichten 283 (2010), 193-199) it was shown that inf α > 0 M n ( α ) = 1 / n . We find the exact values of M n ( α ) and determine corresponding extremal polynomials. The method applied uses known cases of maximal ranges of polynomials.

A generalisation of Amitsur's A-polynomials

Adam Owen, Susanne Pumplün (2021)

Communications in Mathematics

Similarity:

We find examples of polynomials f D [ t ; σ , δ ] whose eigenring ( f ) is a central simple algebra over the field F = C Fix ( σ ) Const ( δ ) .

The factorization of f ( x ) x n + g ( x ) with f ( x ) monic and of degree 2 .

Joshua Harrington, Andrew Vincent, Daniel White (2013)

Journal de Théorie des Nombres de Bordeaux

Similarity:

In this paper we investigate the factorization of the polynomials f ( x ) x n + g ( x ) [ x ] in the special case where f ( x ) is a monic quadratic polynomial with negative discriminant. We also mention similar results in the case that f ( x ) is monic and linear.

Deformed Heisenberg algebra with reflection and d -orthogonal polynomials

Fethi Bouzeffour, Hanen Ben Mansour, Ali Zaghouani (2017)

Czechoslovak Mathematical Journal

Similarity:

This paper is devoted to the study of matrix elements of irreducible representations of the enveloping deformed Heisenberg algebra with reflection, motivated by recurrence relations satisfied by hypergeometric functions. It is shown that the matrix elements of a suitable operator given as a product of exponential functions are expressed in terms of d -orthogonal polynomials, which are reduced to the orthogonal Meixner polynomials when d = 1 . The underlying algebraic framework allowed a systematic...

Some results on derangement polynomials

Mehdi Hassani, Hossein Moshtagh, Mohammad Ghorbani (2022)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We study moments of the difference D n ( x ) - x n n ! e - 1 / x concerning derangement polynomials D n ( x ) . For the first moment, we obtain an explicit formula in terms of the exponential integral function and we show that it is always negative for x > 0 . For the higher moments, we obtain a multiple integral representation of the order of the moment under computation.

The algebra of polynomials on the space of ultradifferentiable functions

Katarzyna Grasela (2010)

Banach Center Publications

Similarity:

We consider the space of ultradifferentiable functions with compact supports and the space of polynomials on . A description of the space ( ) of polynomial ultradistributions as a locally convex direct sum is given.

Fejér–Riesz factorizations and the structure of bivariate polynomials orthogonal on the bi-circle

Jeffrey S. Geronimo, Plamen Iliev (2014)

Journal of the European Mathematical Society

Similarity:

We give a complete characterization of the positive trigonometric polynomials Q ( θ , ϕ ) on the bi-circle, which can be factored as Q ( θ , ϕ ) = | p ( e i θ , e i ϕ ) | 2 where p ( z , w ) is a polynomial nonzero for | z | = 1 and | w | 1 . The conditions are in terms of recurrence coefficients associated with the polynomials in lexicographical and reverse lexicographical ordering orthogonal with respect to the weight 1 4 π 2 Q ( θ , ϕ ) on the bi-circle. We use this result to describe how specific factorizations of weights on the bi-circle can be translated into identities...

Thom polynomials and Schur functions: the singularities I I I 2 , 3 ( - )

Özer Öztürk (2010)

Annales Polonici Mathematici

Similarity:

We give a closed formula for the Thom polynomials of the singularities I I I 2 , 3 ( - ) in terms of Schur functions. Our computations combine the characterization of the Thom polynomials via the “method of restriction equations” of Rimányi et al. with the techniques of Schur functions.

On prime values of reducible quadratic polynomials

W. Narkiewicz, T. Pezda (2002)

Colloquium Mathematicae

Similarity:

It is shown that Dickson’s Conjecture about primes in linear polynomials implies that if f is a reducible quadratic polynomial with integral coefficients and non-zero discriminant then for every r there exists an integer N r such that the polynomial f ( X ) / N r represents at least r distinct primes.

Approximation by weighted polynomials in k

Maritza M. Branker (2005)

Annales Polonici Mathematici

Similarity:

We apply pluripotential theory to establish results in k concerning uniform approximation by functions of the form wⁿPₙ where w denotes a continuous nonnegative function and Pₙ is a polynomial of degree at most n. Then we use our work to show that on the intersection of compact sections Σ k a continuous function on Σ is uniformly approximable by θ-incomplete polynomials (for a fixed θ, 0 < θ < 1) iff f vanishes on θ²Σ. The class of sets Σ expressible as the intersection of compact...

Rademacher-Carlitz polynomials

Matthias Beck, Florian Kohl (2014)

Acta Arithmetica

Similarity:

We introduce and study the Rademacher-Carlitz polynomial R ( u , v , s , t , a , b ) : = k = s s + b - 1 u ( k a + t ) / b v k where a , b > 0 , s,t ∈ ℝ, and u and v are variables. These polynomials generalize and unify various Dedekind-like sums and polynomials; most naturally, one may view R(u,v,s,t,a,b) as a polynomial analogue (in the sense of Carlitz) of the Dedekind-Rademacher sum r t ( a , b ) : = k = 0 b - 1 ( ( ( k a + t ) / b ) ) ( ( k / b ) ) , which appears in various number-theoretic, combinatorial, geometric, and computational contexts. Our results come in three flavors: we prove a reciprocity theorem for Rademacher-Carlitz...

Unconditionality for m-homogeneous polynomials on

Andreas Defant, Pablo Sevilla-Peris (2016)

Studia Mathematica

Similarity:

Let χ(m,n) be the unconditional basis constant of the monomial basis z α , α ∈ ℕ₀ⁿ with |α| = m, of the Banach space of all m-homogeneous polynomials in n complex variables, endowed with the supremum norm on the n-dimensional unit polydisc ⁿ. We prove that the quotient of s u p m s u p m χ ( m , n ) m and √(n/log n) tends to 1 as n → ∞. This reflects a quite precise dependence of χ(m,n) on the degree m of the polynomials and their number n of variables. Moreover, we give an analogous formula for m-linear forms, a...

On some properties of Chebyshev polynomials

Hacène Belbachir, Farid Bencherif (2008)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

Letting T n (resp. U n ) be the n-th Chebyshev polynomials of the first (resp. second) kind, we prove that the sequences ( X k T n - k ) k and ( X k U n - k ) k for n - 2⎣n/2⎦ ≤ k ≤ n - ⎣n/2⎦ are two basis of the ℚ-vectorial space n [ X ] formed by the polynomials of ℚ[X] having the same parity as n and of degree ≤ n. Also T n and U n admit remarkableness integer coordinates on each of the two basis.

Inequalities for two sine polynomials

Horst Alzer, Stamatis Koumandos (2006)

Colloquium Mathematicae

Similarity:

We prove: (I) For all integers n ≥ 2 and real numbers x ∈ (0,π) we have α j = 1 n - 1 1 / ( n ² - j ² ) s i n ( j x ) β , with the best possible constant bounds α = (15-√2073)/10240 √(1998-10√2073) = -0.1171..., β = 1/3. (II) The inequality 0 < j = 1 n - 1 ( n ² - j ² ) s i n ( j x ) holds for all even integers n ≥ 2 and x ∈ (0,π), and also for all odd integers n ≥ 3 and x ∈ (0,π - π/n].

On Alternatives of Polynomial Congruences

Mariusz Skałba (2004)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

What should be assumed about the integral polynomials f ( x ) , . . . , f k ( x ) in order that the solvability of the congruence f ( x ) f ( x ) f k ( x ) 0 ( m o d p ) for sufficiently large primes p implies the solvability of the equation f ( x ) f ( x ) f k ( x ) = 0 in integers x? We provide some explicit characterizations for the cases when f j ( x ) are binomials or have cyclic splitting fields.

Lower bounds for norms of products of polynomials on L p spaces

Daniel Carando, Damián Pinasco, Jorge Tomás Rodríguez (2013)

Studia Mathematica

Similarity:

For 1 < p < 2 we obtain sharp lower bounds for the uniform norm of products of homogeneous polynomials on L p ( μ ) , whenever the number of factors is no greater than the dimension of these Banach spaces (a condition readily satisfied in infinite-dimensional settings). The result also holds for the Schatten classes p . For p > 2 we present some estimates on the constants involved.

Linearly-invariant families and generalized Meixner–Pollaczek polynomials

Iwona Naraniecka, Jan Szynal, Anna Tatarczak (2013)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

The extremal functions  f 0 ( z )   realizing the maxima of some functionals (e.g. max | a 3 | , and  max a r g f ' ( z ) ) within the so-called universal linearly invariant family U α (in the sense of Pommerenke [10]) have such a form that f 0 ' ( z )   looks similar to generating function for Meixner-Pollaczek (MP) polynomials [2], [8]. This fact gives motivation for the definition and study of the generalized Meixner-Pollaczek (GMP) polynomials P n λ ( x ; θ , ψ ) of a real variable x as coefficients of G λ ( x ; θ , ψ ; z ) = 1 ( 1 - z e i θ ) λ - i x ( 1 - z e i ψ ) λ + i x = n = 0 P n λ ( x ; θ , ψ ) z n , | z | < 1 , where the parameters λ , θ , ψ satisfy the conditions:...

On the lattice of polynomials with integer coefficients: the covering radius in L p ( 0 , 1 )

Wojciech Banaszczyk, Artur Lipnicki (2015)

Annales Polonici Mathematici

Similarity:

The paper deals with the approximation by polynomials with integer coefficients in L p ( 0 , 1 ) , 1 ≤ p ≤ ∞. Let P n , r be the space of polynomials of degree ≤ n which are divisible by the polynomial x r ( 1 - x ) r , r ≥ 0, and let P n , r P n , r be the set of polynomials with integer coefficients. Let μ ( P n , r ; L p ) be the maximal distance of elements of P n , r from P n , r in L p ( 0 , 1 ) . We give rather precise quantitative estimates of μ ( P n , r ; L ) for n ≳ 6r. Then we obtain similar, somewhat less precise, estimates of μ ( P n , r ; L p ) for p ≠ 2. It follows that μ ( P n , r ; L p ) n - 2 r - 2 / p as n → ∞. The results...