A note on sumsets of subgroups in
Acta Arithmetica (2013)
- Volume: 161, Issue: 4, page 387-395
- ISSN: 0065-1036
Access Full Article
topAbstract
topHow to cite
topDerrick Hart. "A note on sumsets of subgroups in $ℤ*_{p}$." Acta Arithmetica 161.4 (2013): 387-395. <http://eudml.org/doc/279312>.
@article{DerrickHart2013,
	abstract = {Let A be a multiplicative subgroup of $ℤ*_p$. Define the k-fold sumset of A to be $kA = \{x_1 + ... + x_k : x_i ∈ A, 1 ≤ i ≤ k\}$. We show that $6A ⊇ ℤ*_p$ for $|A| > p^\{11/23+ϵ\}$. In addition, we extend a result of Shkredov to show that $|2A| ≫ |A|^\{8/5-ϵ\}$ for $|A| ≪ p^\{5/9\}$.},
	author = {Derrick Hart},
	journal = {Acta Arithmetica},
	keywords = {multiplicative subgroups; sumsets; sum-product},
	language = {eng},
	number = {4},
	pages = {387-395},
	title = {A note on sumsets of subgroups in $ℤ*_\{p\}$},
	url = {http://eudml.org/doc/279312},
	volume = {161},
	year = {2013},
}
TY  - JOUR
AU  - Derrick Hart
TI  - A note on sumsets of subgroups in $ℤ*_{p}$
JO  - Acta Arithmetica
PY  - 2013
VL  - 161
IS  - 4
SP  - 387
EP  - 395
AB  - Let A be a multiplicative subgroup of $ℤ*_p$. Define the k-fold sumset of A to be $kA = {x_1 + ... + x_k : x_i ∈ A, 1 ≤ i ≤ k}$. We show that $6A ⊇ ℤ*_p$ for $|A| > p^{11/23+ϵ}$. In addition, we extend a result of Shkredov to show that $|2A| ≫ |A|^{8/5-ϵ}$ for $|A| ≪ p^{5/9}$.
LA  - eng
KW  - multiplicative subgroups; sumsets; sum-product
UR  - http://eudml.org/doc/279312
ER  - 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 