An asymptotic formula related to the divisors of the quaternary quadratic form

Liqun Hu

Acta Arithmetica (2014)

  • Volume: 166, Issue: 2, page 129-140
  • ISSN: 0065-1036

Abstract

top
Let d(n) stand for the Dirichlet divisor function. We give an asymptotic formula for 1 m , m , m , m x d ( m ² + m ² + m ² + m ² ) with the help of the circle method.

How to cite

top

Liqun Hu. "An asymptotic formula related to the divisors of the quaternary quadratic form." Acta Arithmetica 166.2 (2014): 129-140. <http://eudml.org/doc/279363>.

@article{LiqunHu2014,
abstract = {Let d(n) stand for the Dirichlet divisor function. We give an asymptotic formula for $∑_\{1≤m₁,m₂,m₃,m₄≤x\} d(m₁²+m₂²+m₃²+m₄²)$ with the help of the circle method.},
author = {Liqun Hu},
journal = {Acta Arithmetica},
keywords = {circle method; divisor problem; quadratic form},
language = {eng},
number = {2},
pages = {129-140},
title = {An asymptotic formula related to the divisors of the quaternary quadratic form},
url = {http://eudml.org/doc/279363},
volume = {166},
year = {2014},
}

TY - JOUR
AU - Liqun Hu
TI - An asymptotic formula related to the divisors of the quaternary quadratic form
JO - Acta Arithmetica
PY - 2014
VL - 166
IS - 2
SP - 129
EP - 140
AB - Let d(n) stand for the Dirichlet divisor function. We give an asymptotic formula for $∑_{1≤m₁,m₂,m₃,m₄≤x} d(m₁²+m₂²+m₃²+m₄²)$ with the help of the circle method.
LA - eng
KW - circle method; divisor problem; quadratic form
UR - http://eudml.org/doc/279363
ER -

NotesEmbed ?

top

You must be logged in to post comments.