Duality and optimality conditions in abstract concave maximization

Tran Quoc Chien

Kybernetika (1985)

  • Volume: 21, Issue: 2, page 108-117
  • ISSN: 0023-5954

How to cite

top

Chien, Tran Quoc. "Duality and optimality conditions in abstract concave maximization." Kybernetika 21.2 (1985): 108-117. <http://eudml.org/doc/27955>.

@article{Chien1985,
author = {Chien, Tran Quoc},
journal = {Kybernetika},
keywords = {duality theory; concave maximization of vector-valued functions; vector Lagrangian function; separation theorems},
language = {eng},
number = {2},
pages = {108-117},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Duality and optimality conditions in abstract concave maximization},
url = {http://eudml.org/doc/27955},
volume = {21},
year = {1985},
}

TY - JOUR
AU - Chien, Tran Quoc
TI - Duality and optimality conditions in abstract concave maximization
JO - Kybernetika
PY - 1985
PB - Institute of Information Theory and Automation AS CR
VL - 21
IS - 2
SP - 108
EP - 117
LA - eng
KW - duality theory; concave maximization of vector-valued functions; vector Lagrangian function; separation theorems
UR - http://eudml.org/doc/27955
ER -

References

top
  1. R. B. Holmes, Geometrical Functional Analysis and Its Applications, Springer-Verlag, Berlin 1975. (1975) MR0410335
  2. V. V. Podinovskij, V. D. Nogin, Pareto-Optimization Solutions of Multicriterial Programs, (in Russian). Nauka, Moscow 1982. (1982) 
  3. G. P. Akilov, S. S. Kutatelaze, Ordered Vector Spaces, (in Russian). Nauka, Moscow 1978. (1978) 
  4. Tran Quoc Chien, Duality in vector optimization. Part I. Abstract duality scheme, Kybernetika 20 (1984), 4, 304-314. (1984) MR0768510
  5. J. Bair, On the convex programming problem in an ordered vector space, Bull. Soc. Roy. Sci. Liège 46 (1977), 234-240. (1977) Zbl0378.90079MR0493762
  6. G. R. Bitran, Duality for nonlinear multiple-criteria optimization problems, J. Optim. Theory Appl. 35 (1981), 3, 367-401. (1981) Zbl0445.90082MR0642482
  7. M. Minami, Weak Pareto optimality of multiobjective problems in a locally convex linear topological space, J. Optim. Theory Appl. 34 (1981), 4, 469-484. (1981) Zbl0431.49004MR0631951
  8. J. W. Nieuwenhuis, Supremai points and generalized duality, Math. Operationsforschung Statist. Ser. Optim. 11 (1980), 1, 41-59. (1980) MR0608904
  9. A. Ya. Dubovskij, A. A. Milyutin, Constrained extremal problems, Ž. Vyčisl. Mat. i Mat. Fiz. 5 (1965), 3, 395-453. (1965) 
  10. V. F. Demjanov, L. V. Vasiljev, Nondifferential Optimization, (in Russian). Nauka, Moscow 1981. (1981) 
  11. T. Tanino, Y. Sawaragi, Duality theory in multiobjective programming, J. Optim. Theory Appl. 27 (1979), 4, 509-529. (1979) Zbl0378.90100MR0533118
  12. T. Tanino, Y. Sawaragi, Conjugate maps and duality in multiobjective optimization, J. Optim. Theory Appl,. 31 (1980), 4, 473-499. (1980) Zbl0418.90080MR0600200
  13. J. Zowe, Fenchelsche Dualitätsaussagen in endlichdimensionalen halbgeordneten Vektor-räumen, Z. Angew. Math. Mech. 53 (1973), 230-232. (1973) MR0346664
  14. C. Gros, Generalization of Fenchel's duality theorem for convex vector optimization, European J. Oper. Res. 2 (1979), 369-376. (1979) MR0507584

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.