Duality in vector optimization. I. Abstract duality scheme

Tran Quoc Chien

Kybernetika (1984)

  • Volume: 20, Issue: 4, page 304-313
  • ISSN: 0023-5954

How to cite

top

Chien, Tran Quoc. "Duality in vector optimization. I. Abstract duality scheme." Kybernetika 20.4 (1984): 304-313. <http://eudml.org/doc/27982>.

@article{Chien1984,
author = {Chien, Tran Quoc},
journal = {Kybernetika},
keywords = {abstract duality scheme; duality principles},
language = {eng},
number = {4},
pages = {304-313},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Duality in vector optimization. I. Abstract duality scheme},
url = {http://eudml.org/doc/27982},
volume = {20},
year = {1984},
}

TY - JOUR
AU - Chien, Tran Quoc
TI - Duality in vector optimization. I. Abstract duality scheme
JO - Kybernetika
PY - 1984
PB - Institute of Information Theory and Automation AS CR
VL - 20
IS - 4
SP - 304
EP - 313
LA - eng
KW - abstract duality scheme; duality principles
UR - http://eudml.org/doc/27982
ER -

References

top
  1. G. S. Rubinstein, Duality in mathematical programming and some question of convex analysis, Uspehi Mat. Nauk 25 {155) (1970), 5, 171- 201. In Russian. (1970) MR0293989
  2. V. V. Podinovskij, V. D. Nogin, Pareto Optimal Solutions in Multiobjective Problems, Nauka, Moscow 1982. In Russian. (1982) 
  3. T. Tanino, Saddle points and duality in multi-objective programming, Internat. J. Systems Sci. 13 (1982), 3, 323-335. (1982) Zbl0487.49021MR0703062
  4. J. W. Niewehuis, Supremal points and generalized duality, Math. Operationsforsch. Statist. Ser. Optim. 11 (1980), 1, 41-59. (1980) MR0608904
  5. T. Tanino, Y. Sawaragi, Duality theory in multiobjective programming, J. Optim. Theory Appl. 27 (1979), 4, 509-529. (1979) Zbl0378.90100MR0533118
  6. T. Tanino, Y. Sawaragi, Conjugate maps and duality in multiobjective programming, J. Optim. Theory Appl. 31 (1980), 4, 473-499. (1980) MR0600200
  7. S. Brumelle, Duality for multiobjective programming convex programning, Math. Oper. Res. 6 (1981), 2, 159-172. (1981) MR0616342
  8. D. Wolfe, A duality theorem for nonlinear programming, Quart. Appl. Math. 19 (1981), 239-244. (1981) 
  9. M. Schechter, A subgradient duality theorem, J. Math. Anal. Appl. 61 (1977), 850-855. (1977) Zbl0369.90104MR0472060
  10. R. T. Rockafellar, Augmented Lagrange multiplier functions and duality in nonconvex programming, SIAM J. Control 12 (1974), 2, 268-285. (1974) Zbl0257.90046MR0384163
  11. S. Schaible, Fractional programming I, duality, Management Sci. 23 (1976), 8, 858-867. (1976) Zbl0338.90050MR0421679
  12. S. Schaible, Duality in fractional programming: a unified approach, Oper. Res. 24 (1976), 452-461. (1976) Zbl0348.90120MR0411644

Citations in EuDML Documents

top
  1. Tran Quoc Chien, Duality in vector optimization. II. Vector quasiconcave programming
  2. Tran Quoc Chien, Duality and optimality conditions in abstract concave maximization
  3. Tran Quoc Chien, Duality in vector optimization. III. Vector partially quasiconcave programming and vector fractional programming
  4. Tran Quoc Chien, Fenchel-Lagrange duality in vector fractional programming via abstract duality scheme
  5. Tran Quoc Chien, Perturbation theory of duality in vector optimization via the abstract duality scheme
  6. Tran Quoc Chien, Nondifferentiable and quasidifferentiable duality in vector optimization theory
  7. Tran Quoc Chien, Unification of the abstract duality scheme
  8. Tran Quoc Chien, Support separation theorems and their applications to vector surrogate reverse duality

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.