The shortest confidence interval for the probability of success in a negative binomial model
Applicationes Mathematicae (2012)
- Volume: 39, Issue: 2, page 143-149
- ISSN: 1233-7234
Access Full Article
topAbstract
topHow to cite
topWojciech Zieliński. "The shortest confidence interval for the probability of success in a negative binomial model." Applicationes Mathematicae 39.2 (2012): 143-149. <http://eudml.org/doc/280033>.
@article{WojciechZieliński2012,
abstract = {The existence of the shortest confidence interval for the probability of success in a negative binomial distribution is shown. The method of obtaining such an interval is presented as well. The interval obtained is compared with the Clopper-Pearson shortest confidence interval for the probability in the binomial model.},
author = {Wojciech Zieliński},
journal = {Applicationes Mathematicae},
keywords = {Pascal distribution},
language = {eng},
number = {2},
pages = {143-149},
title = {The shortest confidence interval for the probability of success in a negative binomial model},
url = {http://eudml.org/doc/280033},
volume = {39},
year = {2012},
}
TY - JOUR
AU - Wojciech Zieliński
TI - The shortest confidence interval for the probability of success in a negative binomial model
JO - Applicationes Mathematicae
PY - 2012
VL - 39
IS - 2
SP - 143
EP - 149
AB - The existence of the shortest confidence interval for the probability of success in a negative binomial distribution is shown. The method of obtaining such an interval is presented as well. The interval obtained is compared with the Clopper-Pearson shortest confidence interval for the probability in the binomial model.
LA - eng
KW - Pascal distribution
UR - http://eudml.org/doc/280033
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.