On some new sharp embedding theorems in minimal and pseudoconvex domains

Romi F. Shamoyan; Olivera R. Mihić

Czechoslovak Mathematical Journal (2016)

  • Volume: 66, Issue: 2, page 527-546
  • ISSN: 0011-4642

Abstract

top
We present new sharp embedding theorems for mixed-norm analytic spaces in pseudoconvex domains with smooth boundary. New related sharp results in minimal bounded homogeneous domains in higher dimension are also provided. Last domains we consider are domains which are direct generalizations of the well-studied so-called bounded symmetric domains in n . Our results were known before only in the very particular case of domains of such type in the unit ball. As in the unit ball case, all our proofs are heavily based on nice properties of the r -lattice. Some results of this paper can be also obtained in some unbounded domains, namely tubular domains over symmetric cones.

How to cite

top

Shamoyan, Romi F., and Mihić, Olivera R.. "On some new sharp embedding theorems in minimal and pseudoconvex domains." Czechoslovak Mathematical Journal 66.2 (2016): 527-546. <http://eudml.org/doc/280089>.

@article{Shamoyan2016,
abstract = {We present new sharp embedding theorems for mixed-norm analytic spaces in pseudoconvex domains with smooth boundary. New related sharp results in minimal bounded homogeneous domains in higher dimension are also provided. Last domains we consider are domains which are direct generalizations of the well-studied so-called bounded symmetric domains in $\mathbb \{C\}^\{n\}.$ Our results were known before only in the very particular case of domains of such type in the unit ball. As in the unit ball case, all our proofs are heavily based on nice properties of the $r$-lattice. Some results of this paper can be also obtained in some unbounded domains, namely tubular domains over symmetric cones.},
author = {Shamoyan, Romi F., Mihić, Olivera R.},
journal = {Czechoslovak Mathematical Journal},
keywords = {embedding theorem; minimal domain; pseudoconvex domain; Bergman-type space; Blaschke-type infinite canonical products; area Nevanlinna-type spaces; Nevanlinna characteristic; parametric representations; zero sets},
language = {eng},
number = {2},
pages = {527-546},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On some new sharp embedding theorems in minimal and pseudoconvex domains},
url = {http://eudml.org/doc/280089},
volume = {66},
year = {2016},
}

TY - JOUR
AU - Shamoyan, Romi F.
AU - Mihić, Olivera R.
TI - On some new sharp embedding theorems in minimal and pseudoconvex domains
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 2
SP - 527
EP - 546
AB - We present new sharp embedding theorems for mixed-norm analytic spaces in pseudoconvex domains with smooth boundary. New related sharp results in minimal bounded homogeneous domains in higher dimension are also provided. Last domains we consider are domains which are direct generalizations of the well-studied so-called bounded symmetric domains in $\mathbb {C}^{n}.$ Our results were known before only in the very particular case of domains of such type in the unit ball. As in the unit ball case, all our proofs are heavily based on nice properties of the $r$-lattice. Some results of this paper can be also obtained in some unbounded domains, namely tubular domains over symmetric cones.
LA - eng
KW - embedding theorem; minimal domain; pseudoconvex domain; Bergman-type space; Blaschke-type infinite canonical products; area Nevanlinna-type spaces; Nevanlinna characteristic; parametric representations; zero sets
UR - http://eudml.org/doc/280089
ER -

References

top
  1. Abate, M., Raissy, J., Saracco, A., 10.1016/j.jfa.2012.08.027, J. Funct. Anal. 263 (2012), 3449-3491. (2012) Zbl1269.32003MR2984073DOI10.1016/j.jfa.2012.08.027
  2. Abate, M., Saracco, A., 10.1112/jlms/jdq092, J. Lond. Math. Soc., Ser. (2) 83 (2011), 587-605. (2011) Zbl1227.32008MR2802500DOI10.1112/jlms/jdq092
  3. Arsenović, M., Shamoyan, R. F., 10.4134/BKMS.2015.52.1.085, Bull. Korean Math. Soc. 52 (2015), 85-103. (2015) Zbl1308.32037MR3313426DOI10.4134/BKMS.2015.52.1.085
  4. F. Beatrous, Jr., 10.1307/mmj/1029003244, Mich. Math. J. 32 (1985), 361-380. (1985) MR0803838DOI10.1307/mmj/1029003244
  5. Carleson, L., 10.2307/1970375, Ann. Math. (2) 76 (1962), 547-559. (1962) Zbl0112.29702MR0141789DOI10.2307/1970375
  6. Cima, J. A., Mercer, P. R., Composition operators between Bergman spaces on convex domains in n , J. Oper. Theory 33 (1995), 363-369. (1995) MR1354986
  7. Cima, J. A., Wogen, W. R., A Carleson measure theorem for the Bergman space on the ball, J. Oper. Theory 7 (1982), 157-163. (1982) Zbl0499.42011MR0650200
  8. Cohn, W. S., 10.7146/math.scand.a-12470, Math. Scand. 73 (1993), 259-273. (1993) Zbl0815.32012MR1269263DOI10.7146/math.scand.a-12470
  9. Djrbashian, A. E., Shamoyan, F. A., Topics in the Theory of A α p Spaces, Teubner-Texte zur Mathematik 105 Teubner, Leipzig (1988). (1988) MR1021691
  10. Engliš, M., Hänninen, T. T., Taskinen, J., Minimal L -type spaces on strictly pseudoconvex domains on which the Bergman projection is continuous, Houston J. Math. 32 (2006), 253-275. (2006) Zbl1113.46017MR2202364
  11. Hastings, W. W., 10.1090/S0002-9939-1975-0374886-9, Proc. Am. Math. Soc. 52 (1975), 237-241. (1975) Zbl0296.31009MR0374886DOI10.1090/S0002-9939-1975-0374886-9
  12. Jimbo, T., Sakai, A., 10.1080/17476938708814242, Complex Variables, Theory Appl. 8 (1987), 333-341. (1987) Zbl0587.32032MR0898073DOI10.1080/17476938708814242
  13. Kobayashi, S., 10.1007/978-3-662-03582-5, Grundlehren der Mathematischen Wissenschaften 318 Springer, Berlin (1998). (1998) Zbl0917.32019MR1635983DOI10.1007/978-3-662-03582-5
  14. Krantz, S. G., Function Theory of Several Complex Variables, Pure and Applied Mathematics A Wiley-Interscience Publication. John Wiley & Sons, New York (1982). (1982) Zbl0471.32008MR0635928
  15. Li, H., 10.1016/0022-1236(92)90054-M, J. Funct. Anal. 106 (1992), 375-408. (1992) Zbl0793.47025MR1165861DOI10.1016/0022-1236(92)90054-M
  16. Li, S.-Y., Luo, W., 10.1016/j.jmaa.2006.03.074, J. Math. Anal. Appl. 333 (2007), 1189-1202. (2007) MR2331724DOI10.1016/j.jmaa.2006.03.074
  17. Li, S., Shamoyan, R., 10.1016/j.bulsci.2008.04.003, Bull. Sci. Math. 134 (2010), 144-154. (2010) Zbl1187.32003MR2592966DOI10.1016/j.bulsci.2008.04.003
  18. Li, S., Shamoyan, R., On some properties of analytic spaces connected with Bergman metric ball, Bull. Iran. Math. Soc. 34 (2008), 121-139. (2008) Zbl1182.32002MR2477998
  19. Luecking, D., 10.1090/S0002-9939-1983-0687635-6, Proc. Am. Math. Soc. 87 (1983), 656-660. (1983) Zbl0521.32005MR0687635DOI10.1090/S0002-9939-1983-0687635-6
  20. McNeal, J. D., Stein, E. M., Mapping properties of the Bergman projection on convex domains of finite type, Duke Math. J. 73 (1994), 177-199. (1994) Zbl0801.32008MR1257282
  21. Oleinik, V. L., 10.1007/BF01578546, J. Sov. Math. 9 (1978), 228-243. (1978) Zbl0396.31001DOI10.1007/BF01578546
  22. Oleinik, V. L., Pavlov, B. S., 10.1007/BF01099672, J. Sov. Math. 2 (1974), 135-142. (1974) MR0318867DOI10.1007/BF01099672
  23. Ortega, J. M., Fàbrega, J., Mixed-norm spaces and interpolation, Stud. Math. 109 (1994), 233-254. (1994) Zbl0826.32003MR1274011
  24. Range, R. M., 10.1007/978-1-4757-1918-5, Graduate Texts in Mathematics 108 Springer, New York (1986). (1986) Zbl0591.32002MR0847923DOI10.1007/978-1-4757-1918-5
  25. Shamoyan, R. F., Kurilenko, S. M., Sergey, M., On a new embedding theorem in analytic Bergman type spaces in bounded strictly pseudoconvex domains of n -dimensional complex space, Journal of Siberian Federal University 7 (2014), 383-388. (2014) 
  26. Shamoyan, R. F., Mihić, O. R., On distance function in some new analytic Bergman type spaces in n , J. Funct. Spaces (2014), Article ID 275416, 10 pages. (2014) MR3208648
  27. Shamoyan, R. F., Mihić, O. R., On new estimates for distances in analytic function spaces in higher dimension, Sib. Èlektron. Mat. Izv. (electronic only) 6 (2009), 514-517. (2009) Zbl1299.30106MR2586703
  28. Shamoyan, R. F., Mihić, O. R., 10.22436/jnsa.002.03.07, J. Nonlinear Sci. Appl. 2 (2009), 183-194. (2009) Zbl1181.32009MR2521196DOI10.22436/jnsa.002.03.07
  29. Shamoyan, R., Povprits, E., Sharp theorems on traces in analytic spaces in tube domains over symmetric cones, Journal of Siberian Federal University 6 (2013), 527-538. (2013) MR3496285
  30. Shamoyan, R. F., Povprits, E. V., Multifunctional analytic spaces on products of bounded strictly pseudoconvex domains and embedding theorems, Kragujevac J. Math. 37 (2013), 221-244. (2013) MR3150861
  31. Shamoyan, R., Radnia, M., 10.22436/jnsa.002.04.06, J. Nonlinear Sci. Appl. 2 (2009), 243-250. (2009) Zbl1181.32010MR2562265DOI10.22436/jnsa.002.04.06
  32. Yamaji, S., 10.32917/hmj/1368217952, Hiroshima Math. J. 43 (2013), 107-127. (2013) Zbl1304.47034MR3066527DOI10.32917/hmj/1368217952
  33. Yamaji, S., 10.2969/jmsj/06541101, J. Math. Soc. Japan 65 (2013), 1101-1115. (2013) Zbl1284.47025MR3127818DOI10.2969/jmsj/06541101
  34. Zhu, K., Spaces of Holomorphic Functions in the Unit Ball, Graduate Texts in Mathematics 226 Springer, New York (2005). (2005) Zbl1067.32005MR2115155

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.