Mixed-norm spaces and interpolation

Joaquín Ortega; Joan Fàbrega

Studia Mathematica (1994)

  • Volume: 109, Issue: 3, page 233-254
  • ISSN: 0039-3223

Abstract

top
Let D be a bounded strictly pseudoconvex domain of n with smooth boundary. We consider the weighted mixed-norm spaces A δ , k p , q ( D ) of holomorphic functions with norm f p , q , δ , k = ( | α | k ʃ 0 r 0 ( ʃ D r | D α f | p d σ r ) q / p r δ q / p - 1 d r ) 1 / q . We prove that these spaces can be obtained by real interpolation between Bergman-Sobolev spaces A δ , k p ( D ) and we give results about real and complex interpolation between them. We apply these results to prove that A δ , k p , q ( D ) is the intersection of a Besov space B s p , q ( D ) with the space of holomorphic functions on D. Further, we obtain several properties of the mixed-norm spaces.

How to cite

top

Ortega, Joaquín, and Fàbrega, Joan. "Mixed-norm spaces and interpolation." Studia Mathematica 109.3 (1994): 233-254. <http://eudml.org/doc/216072>.

@article{Ortega1994,
abstract = {Let D be a bounded strictly pseudoconvex domain of $ℂ^n$ with smooth boundary. We consider the weighted mixed-norm spaces $A^\{p,q\}_\{δ,k\}(D)$ of holomorphic functions with norm $∥f∥_\{p,q,δ,k\} = (∑_\{|α|≤k\} ʃ_\{0\}^\{r_0\} (ʃ_\{∂D_\{r\}\} |D^\{α\} f|^p dσ_\{r\})^\{q/p\} r^\{δq/p-1\} dr)^\{1/q\}$. We prove that these spaces can be obtained by real interpolation between Bergman-Sobolev spaces $A^\{p\}_\{δ,k\}(D)$ and we give results about real and complex interpolation between them. We apply these results to prove that $A^\{p,q\}_\{δ,k\}(D)$ is the intersection of a Besov space $B^\{p,q\}_\{s\}(D)$ with the space of holomorphic functions on D. Further, we obtain several properties of the mixed-norm spaces.},
author = {Ortega, Joaquín, Fàbrega, Joan},
journal = {Studia Mathematica},
keywords = {analytic functions; mixed-norm spaces; real interpolation; complex interpolation; Besov spaces of holomorphic functions; Bergman-Sobolev space; weighted mixed-norm spaces; holomorphic functions; pseudoconvex domain; interpolation; Besov space},
language = {eng},
number = {3},
pages = {233-254},
title = {Mixed-norm spaces and interpolation},
url = {http://eudml.org/doc/216072},
volume = {109},
year = {1994},
}

TY - JOUR
AU - Ortega, Joaquín
AU - Fàbrega, Joan
TI - Mixed-norm spaces and interpolation
JO - Studia Mathematica
PY - 1994
VL - 109
IS - 3
SP - 233
EP - 254
AB - Let D be a bounded strictly pseudoconvex domain of $ℂ^n$ with smooth boundary. We consider the weighted mixed-norm spaces $A^{p,q}_{δ,k}(D)$ of holomorphic functions with norm $∥f∥_{p,q,δ,k} = (∑_{|α|≤k} ʃ_{0}^{r_0} (ʃ_{∂D_{r}} |D^{α} f|^p dσ_{r})^{q/p} r^{δq/p-1} dr)^{1/q}$. We prove that these spaces can be obtained by real interpolation between Bergman-Sobolev spaces $A^{p}_{δ,k}(D)$ and we give results about real and complex interpolation between them. We apply these results to prove that $A^{p,q}_{δ,k}(D)$ is the intersection of a Besov space $B^{p,q}_{s}(D)$ with the space of holomorphic functions on D. Further, we obtain several properties of the mixed-norm spaces.
LA - eng
KW - analytic functions; mixed-norm spaces; real interpolation; complex interpolation; Besov spaces of holomorphic functions; Bergman-Sobolev space; weighted mixed-norm spaces; holomorphic functions; pseudoconvex domain; interpolation; Besov space
UR - http://eudml.org/doc/216072
ER -

References

top
  1. [AM] E. Amar, Suites d’interpolation pour les classes de Bergman de la boule et du polydisque de n , Canad. J. Math. 30 (1978), 711-737. Zbl0385.32014
  2. [BEA] F. Beatrous, Estimates for derivatives of holomorphic functions in pseudoconvex domains, Math. Z. 191 (1986), 91-116. Zbl0596.32005
  3. [BEA-BU] F. Beatrous and J. Burbea, Sobolev spaces of holomorphic functions in the ball, Dissertationes Math. 276 (1989). 
  4. [BER-LO] J. Bergh and J. Löfström, Interpolation Spaces, Grundlehren Math. Wiss. 223, Springer, Berlin, 1976. Zbl0344.46071
  5. [BE-CE] A. Bernal and J. Cerdà, Complex interpolation of quasi-Banach spaces with an A-convex containing space, Ark. Mat. 29 (1991), 183-201. Zbl0757.41031
  6. [B-AN] B. Berndtsson and M. Andersson, Henkin-Ramirez formulas with weight factors, Ann. Inst. Fourier (Grenoble) 32 (3) (1983), 91-110. Zbl0466.32001
  7. [BR-OR1] J. Bruna and J. M. Ortega, Traces on curves of Sobolev spaces of holomorphic functions, Ark. Mat. 29 (1991), 25-49. Zbl0737.46014
  8. [BR-OR2] J. Bruna and J. M. Ortega, Interpolation in Hardy-Sobolev spaces, preprint. 
  9. [CO-RO] R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in L p , Astérisque 77 (1980), 1-65. 
  10. [CO-WE] R. Coifman et G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math. 242, Springer, Berlin, 1971. 
  11. [COU] B. Coupet, Décomposition atomique des espaces de Bergman, Indiana Univ. Math. J. 38 (1990), 917-941. 
  12. [DU] P. Duren, Theory of H p Spaces, Academic Press, New York, 1970. 
  13. [FOR] J. E. Fornæss, Embedding strictly pseudoconvex domains in convex domains, Amer. J. Math. 98 (1976), 529-569. Zbl0334.32020
  14. [GA] S. Gadbois, Mixed-norm generalizations of Bergman spaces and duality, Proc. Amer. Math. Soc. 104 (1988), 1171-1180. Zbl0691.32002
  15. [HA-LIT] G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals II, Math. Z. 28 (1932), 612-634. 
  16. [HO] T. Holmstedt, Interpolation of quasi-Banach spaces, Math. Scand. 26 (1970), 177-199. Zbl0193.08801
  17. [LI1] E. Ligocka, On the space of Bloch harmonic functions and interpolation of spaces of harmonic and holomorphic functions, Studia Math. 87 (1987), 223-238. Zbl0657.31006
  18. [LI2] E. Ligocka, On duality and interpolation for spaces of polyharmonic functions, ibid. 88 (1988), 139-163. Zbl0664.31008
  19. [LU] D. H. Luecking, Representation and duality in weighted spaces of analytic functions, Indiana Univ. Math. J. 34 (1985), 319-336. Zbl0538.32004
  20. [OR] J. M. Ortega, The Gleason problem in Bergman-Sobolev spaces, Complex Variables 20 (1992), 157-170. Zbl0726.32004
  21. [OR-FA] J. M. Ortega and J. Fàbrega, Division and extension in weighted Bergman-Sobolev spaces, Publ. Mat. 36 (1992), 837-859. Zbl0777.32004
  22. [RO] R. Rochberg, Interpolation by functions in Bergman spaces, Michigan Math. J. 29 (1982), 229-236. Zbl0496.32010
  23. [SH] J. H. Shi, Inequalities for the integral means of holomorphic functions and their derivatives in the unit ball of n , Trans. Amer. Math. Soc. 328 (1991), 619-637. Zbl0761.32001
  24. [ST] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970. Zbl0207.13501
  25. [STR] E. Straube, Interpolation between Sobolev and between Lipschitz spaces of analytic functions on starshaped domains, Trans. Amer. Math. Soc. 316 (1989), 653-671. Zbl0695.46034
  26. [TR1] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978. 
  27. [TR2] H. Triebel, Theory of Function Spaces, Birkhäuser, Basel, 1983. 
  28. [VA] N. Varopoulus, BMO functions and ∂̅ equation, Pacific J. Math. 71 (1977), 221-273. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.