Mixed-norm spaces and interpolation
Studia Mathematica (1994)
- Volume: 109, Issue: 3, page 233-254
- ISSN: 0039-3223
Access Full Article
topAbstract
topHow to cite
topOrtega, Joaquín, and Fàbrega, Joan. "Mixed-norm spaces and interpolation." Studia Mathematica 109.3 (1994): 233-254. <http://eudml.org/doc/216072>.
@article{Ortega1994,
abstract = {Let D be a bounded strictly pseudoconvex domain of $ℂ^n$ with smooth boundary. We consider the weighted mixed-norm spaces $A^\{p,q\}_\{δ,k\}(D)$ of holomorphic functions with norm $∥f∥_\{p,q,δ,k\} = (∑_\{|α|≤k\} ʃ_\{0\}^\{r_0\} (ʃ_\{∂D_\{r\}\} |D^\{α\} f|^p dσ_\{r\})^\{q/p\} r^\{δq/p-1\} dr)^\{1/q\}$. We prove that these spaces can be obtained by real interpolation between Bergman-Sobolev spaces $A^\{p\}_\{δ,k\}(D)$ and we give results about real and complex interpolation between them. We apply these results to prove that $A^\{p,q\}_\{δ,k\}(D)$ is the intersection of a Besov space $B^\{p,q\}_\{s\}(D)$ with the space of holomorphic functions on D. Further, we obtain several properties of the mixed-norm spaces.},
author = {Ortega, Joaquín, Fàbrega, Joan},
journal = {Studia Mathematica},
keywords = {analytic functions; mixed-norm spaces; real interpolation; complex interpolation; Besov spaces of holomorphic functions; Bergman-Sobolev space; weighted mixed-norm spaces; holomorphic functions; pseudoconvex domain; interpolation; Besov space},
language = {eng},
number = {3},
pages = {233-254},
title = {Mixed-norm spaces and interpolation},
url = {http://eudml.org/doc/216072},
volume = {109},
year = {1994},
}
TY - JOUR
AU - Ortega, Joaquín
AU - Fàbrega, Joan
TI - Mixed-norm spaces and interpolation
JO - Studia Mathematica
PY - 1994
VL - 109
IS - 3
SP - 233
EP - 254
AB - Let D be a bounded strictly pseudoconvex domain of $ℂ^n$ with smooth boundary. We consider the weighted mixed-norm spaces $A^{p,q}_{δ,k}(D)$ of holomorphic functions with norm $∥f∥_{p,q,δ,k} = (∑_{|α|≤k} ʃ_{0}^{r_0} (ʃ_{∂D_{r}} |D^{α} f|^p dσ_{r})^{q/p} r^{δq/p-1} dr)^{1/q}$. We prove that these spaces can be obtained by real interpolation between Bergman-Sobolev spaces $A^{p}_{δ,k}(D)$ and we give results about real and complex interpolation between them. We apply these results to prove that $A^{p,q}_{δ,k}(D)$ is the intersection of a Besov space $B^{p,q}_{s}(D)$ with the space of holomorphic functions on D. Further, we obtain several properties of the mixed-norm spaces.
LA - eng
KW - analytic functions; mixed-norm spaces; real interpolation; complex interpolation; Besov spaces of holomorphic functions; Bergman-Sobolev space; weighted mixed-norm spaces; holomorphic functions; pseudoconvex domain; interpolation; Besov space
UR - http://eudml.org/doc/216072
ER -
References
top- [AM] E. Amar, Suites d’interpolation pour les classes de Bergman de la boule et du polydisque de , Canad. J. Math. 30 (1978), 711-737. Zbl0385.32014
- [BEA] F. Beatrous, Estimates for derivatives of holomorphic functions in pseudoconvex domains, Math. Z. 191 (1986), 91-116. Zbl0596.32005
- [BEA-BU] F. Beatrous and J. Burbea, Sobolev spaces of holomorphic functions in the ball, Dissertationes Math. 276 (1989).
- [BER-LO] J. Bergh and J. Löfström, Interpolation Spaces, Grundlehren Math. Wiss. 223, Springer, Berlin, 1976. Zbl0344.46071
- [BE-CE] A. Bernal and J. Cerdà, Complex interpolation of quasi-Banach spaces with an A-convex containing space, Ark. Mat. 29 (1991), 183-201. Zbl0757.41031
- [B-AN] B. Berndtsson and M. Andersson, Henkin-Ramirez formulas with weight factors, Ann. Inst. Fourier (Grenoble) 32 (3) (1983), 91-110. Zbl0466.32001
- [BR-OR1] J. Bruna and J. M. Ortega, Traces on curves of Sobolev spaces of holomorphic functions, Ark. Mat. 29 (1991), 25-49. Zbl0737.46014
- [BR-OR2] J. Bruna and J. M. Ortega, Interpolation in Hardy-Sobolev spaces, preprint.
- [CO-RO] R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in , Astérisque 77 (1980), 1-65.
- [CO-WE] R. Coifman et G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math. 242, Springer, Berlin, 1971.
- [COU] B. Coupet, Décomposition atomique des espaces de Bergman, Indiana Univ. Math. J. 38 (1990), 917-941.
- [DU] P. Duren, Theory of Spaces, Academic Press, New York, 1970.
- [FOR] J. E. Fornæss, Embedding strictly pseudoconvex domains in convex domains, Amer. J. Math. 98 (1976), 529-569. Zbl0334.32020
- [GA] S. Gadbois, Mixed-norm generalizations of Bergman spaces and duality, Proc. Amer. Math. Soc. 104 (1988), 1171-1180. Zbl0691.32002
- [HA-LIT] G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals II, Math. Z. 28 (1932), 612-634.
- [HO] T. Holmstedt, Interpolation of quasi-Banach spaces, Math. Scand. 26 (1970), 177-199. Zbl0193.08801
- [LI1] E. Ligocka, On the space of Bloch harmonic functions and interpolation of spaces of harmonic and holomorphic functions, Studia Math. 87 (1987), 223-238. Zbl0657.31006
- [LI2] E. Ligocka, On duality and interpolation for spaces of polyharmonic functions, ibid. 88 (1988), 139-163. Zbl0664.31008
- [LU] D. H. Luecking, Representation and duality in weighted spaces of analytic functions, Indiana Univ. Math. J. 34 (1985), 319-336. Zbl0538.32004
- [OR] J. M. Ortega, The Gleason problem in Bergman-Sobolev spaces, Complex Variables 20 (1992), 157-170. Zbl0726.32004
- [OR-FA] J. M. Ortega and J. Fàbrega, Division and extension in weighted Bergman-Sobolev spaces, Publ. Mat. 36 (1992), 837-859. Zbl0777.32004
- [RO] R. Rochberg, Interpolation by functions in Bergman spaces, Michigan Math. J. 29 (1982), 229-236. Zbl0496.32010
- [SH] J. H. Shi, Inequalities for the integral means of holomorphic functions and their derivatives in the unit ball of , Trans. Amer. Math. Soc. 328 (1991), 619-637. Zbl0761.32001
- [ST] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, 1970. Zbl0207.13501
- [STR] E. Straube, Interpolation between Sobolev and between Lipschitz spaces of analytic functions on starshaped domains, Trans. Amer. Math. Soc. 316 (1989), 653-671. Zbl0695.46034
- [TR1] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.
- [TR2] H. Triebel, Theory of Function Spaces, Birkhäuser, Basel, 1983.
- [VA] N. Varopoulus, BMO functions and ∂̅ equation, Pacific J. Math. 71 (1977), 221-273.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.