Torsion units for some almost simple groups
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 2, page 561-574
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGildea, Joe. "Torsion units for some almost simple groups." Czechoslovak Mathematical Journal 66.2 (2016): 561-574. <http://eudml.org/doc/280090>.
@article{Gildea2016,
abstract = {We investigate the Zassenhaus conjecture regarding rational conjugacy of torsion units in integral group rings for certain automorphism groups of simple groups. Recently, many new restrictions on partial augmentations for torsion units of integral group rings have improved the effectiveness of the Luther-Passi method for verifying the Zassenhaus conjecture for certain groups. We prove that the Zassenhaus conjecture is true for the automorphism group of the simple group $\rm PSL(2,11)$. Additionally we prove that the Prime graph question is true for the automorphism group of the simple group $\rm PSL(2,13)$.},
author = {Gildea, Joe},
journal = {Czechoslovak Mathematical Journal},
keywords = {Zassenhaus conjecture; torsion unit; partial augmentation; integral group ring; group ring; integral; rational; Zassenhaus conjecture; Kimmerle conjecture; prime graph; torsion unit; partial augmentation; simple group},
language = {eng},
number = {2},
pages = {561-574},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Torsion units for some almost simple groups},
url = {http://eudml.org/doc/280090},
volume = {66},
year = {2016},
}
TY - JOUR
AU - Gildea, Joe
TI - Torsion units for some almost simple groups
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 2
SP - 561
EP - 574
AB - We investigate the Zassenhaus conjecture regarding rational conjugacy of torsion units in integral group rings for certain automorphism groups of simple groups. Recently, many new restrictions on partial augmentations for torsion units of integral group rings have improved the effectiveness of the Luther-Passi method for verifying the Zassenhaus conjecture for certain groups. We prove that the Zassenhaus conjecture is true for the automorphism group of the simple group $\rm PSL(2,11)$. Additionally we prove that the Prime graph question is true for the automorphism group of the simple group $\rm PSL(2,13)$.
LA - eng
KW - Zassenhaus conjecture; torsion unit; partial augmentation; integral group ring; group ring; integral; rational; Zassenhaus conjecture; Kimmerle conjecture; prime graph; torsion unit; partial augmentation; simple group
UR - http://eudml.org/doc/280090
ER -
References
top- Artamonov, V. A., Bovdi, A. A., Integral group rings: Groups of units and classical K-theory, J. Sov. Math. 57 (1991), 2931-2958 translation from Itogi Nauki Tekh., Ser. Algebra, Topologiya, Geom. 27 3-43 (1989). (1989)
- Bächle, A., Margolis, L., Rational conjugacy of torsion units in integral group rings of non-solvable groups, ArXiv:1305.7419 [math.RT] (2013). (2013) MR3715687
- Bovdi, V., Grishkov, A., Konovalov, A., Kimmerle conjecture for the Held and O'Nan sporadic simple groups, Sci. Math. Jpn. 69 (2009), 353-362. (2009) Zbl1182.16030MR2510100
- Bovdi, V., Hertweck, M., 10.1515/JGT.2008.004, J. Group Theory 11 (2008), 63-74. (2008) Zbl1143.16032MR2381018DOI10.1515/JGT.2008.004
- Bovdi, V., Höfert, C., Kimmerle, W., On the first Zassenhaus conjecture for integral group rings, Publ. Math. 65 (2004), 291-303. (2004) Zbl1076.16028MR2107948
- Bovdi, V. A., Jespers, E., Konovalov, A. B., 10.1090/S0025-5718-2010-02376-2, Math. Comput. 80 (2011), 593-615. (2011) Zbl1209.16026MR2728996DOI10.1090/S0025-5718-2010-02376-2
- Bovdi, V., Konovalov, A., 10.1142/S0219498811005427, J. Algebra Appl. 11 (2012), Article ID 1250016, 10 pages. (2012) Zbl1247.16032MR2900886DOI10.1142/S0219498811005427
- Bovdi, V. A., Konovalov, A. B., Torsion units in integral group ring of Higman-Sims simple group, Stud. Sci. Math. Hung. 47 (2010), 1-11. (2010) Zbl1221.16026MR2654223
- Bovdi, V. A., Konovalov, A. B., 10.1007/s11253-009-0199-8, Ukr. Mat. Zh. 61 (2009), 3-13 and Ukr. Math. J. 61 (2009), 1-13. (2009) Zbl1209.16027MR2562187DOI10.1007/s11253-009-0199-8
- Bovdi, V. A., Konovalov, A. B., 10.1080/00927870802068045, Commun. Algebra 36 (2008), 2670-2680. (2008) Zbl1148.16027MR2422512DOI10.1080/00927870802068045
- Bovdi, V., Konovalov, A., Integral group ring of the first Mathieu simple group, Groups St. Andrews 2005. Vol. I. Selected Papers of the Conference, St. Andrews, 2005 London Math. Soc. Lecture Note Ser. 339 Cambridge University Press, Cambridge (2007), 237-245 C. M. Campbell et al. (2007) Zbl1120.16025MR2328163
- Bovdi, V. A., Konovalov, A. B., Integral group ring of the McLaughlin simple group, Algebra Discrete Math. 2007 (2007), 43-53. (2007) Zbl1159.16028MR2364062
- Bovdi, V. A., Konovalov, A. B., Linton, S., 10.1142/S0218196711006376, Int. J. Algebra Comput. 21 (2011), 615-634. (2011) Zbl1234.16025MR2812661DOI10.1142/S0218196711006376
- Bovdi, V. A., Konovalov, A. B., Linton, S., 10.1112/S1461157000000516, LMS J. Comput. Math. (electronic only) 11 (2008), 28-39. (2008) Zbl1225.16017MR2379938DOI10.1112/S1461157000000516
- Bovdi, V. A., Konovalov, A. B., Marcos, E. D. N., Integral group ring of the Suzuki sporadic simple group, Publ. Math. 72 (2008), 487-503. (2008) Zbl1156.16022MR2406705
- Bovdi, A., Konovalov, A., Rossmanith, R., Schneider, C., LAGUNA---Lie AlGebras and UNits of group Algebras, (2013), http://www.cs.st-andrews.ac.uk/ {alexk/laguna}.
- Bovdi, V. A., Konovalov, A. B., Siciliano, S., 10.1007/BF03031434, Rend. Circ. Mat. Palermo (2) 56 (2007), 125-136. (2007) Zbl1125.16020MR2313777DOI10.1007/BF03031434
- Caicedo, M., Margolis, L., Río, Á. del, 10.1112/jlms/jdt002, J. Lond. Math. Soc., II. Ser. 88 (2013), 65-78. (2013) MR3092258DOI10.1112/jlms/jdt002
- Cohn, J. A., Livingstone, D., 10.4153/CJM-1965-058-2, Can. J. Math. 17 (1965), 583-593. (1965) Zbl0132.27404MR0179266DOI10.4153/CJM-1965-058-2
- Gildea, J., 10.1142/S0219498813500163, J. Algebra Appl. 12 (2013), 1350016, 10 pages. (2013) Zbl1280.16035MR3063455DOI10.1142/S0219498813500163
- Hertweck, M., 10.1007/s12044-008-0011-y, Proc. Indian Acad. Sci., Math. Sci. 118 (2008), 189-195. (2008) Zbl1149.16027MR2423231DOI10.1007/s12044-008-0011-y
- Hertweck, M., Partial augmentations and Brauer character values of torsion units in group rings, http://arxiv.org/abs/math/0612429 (2007). (2007)
- Hertweck, M., 10.1142/S1005386706000290, Algebra Colloq. 13 (2006), 329-348. (2006) Zbl1097.16009MR2208368DOI10.1142/S1005386706000290
- Hertweck, M., Contributions to the Integral Representation Theory of Groups, Habilitationsschrift, University of Stuttgart (electronic publication) Stuttgart (2004), http://elib.uni-stuttgart.de/opus/volltexte/2004/1638.
- Hertweck, M., Höfert, C. R., Kimmerle, W., 10.1515/JGT.2009.019, J. Group Theory 12 (2009), 873-882. (2009) MR2582054DOI10.1515/JGT.2009.019
- Höfert, C., Kimmerle, W., On torsion units of integral group rings of groups of small order, Groups, Rings and Group Rings. Proc. of the Conf., Ubatuba, 2004 Lect. Notes Pure Appl. Math. 248 Chapman & Hall/CRC, Boca Raton (2006), A. Giambruno et al. 243-252. (2006) Zbl1107.16031MR2226199
- Jespers, E., Kimmerle, W., Marciniak, Z., (eds.), G. Nebe, Mini-Workshop: Arithmetic of group rings, German Oberwolfach Rep. 4 (2007), 3209-3240. (2007) Zbl1177.16002MR2463649
- Kimmerle, W., 10.1090/conm/420/07977, Groups, Rings and Algebras Contemp. Math. 420 American Mathematical Society (AMS), Providence (2006), 215-228 W. Chin et al. (2006) Zbl1126.20001MR2279241DOI10.1090/conm/420/07977
- Luthar, I. S., Passi, I. B. S., 10.1007/BF02874643, Proc. Indian Acad. Sci., Math. Sci. 99 (1989), 1-5. (1989) Zbl0678.16008MR1004634DOI10.1007/BF02874643
- Luthar, I. S., Trama, P., 10.1080/00927879108824263, Commun. Algebra 19 (1991), 2353-2362. (1991) MR1123128DOI10.1080/00927879108824263
- Roggenkamp, K., Scott, L., Isomorphisms of p-adic group rings, Ann. Math. (2) 126 (1987), 593-647. (1987) Zbl0633.20003MR0916720
- Salim, M. A., The prime graph conjecture for integral group rings of some alternating groups, Int. J. Group Theory 2 (2013), 175-185. (2013) Zbl1301.16045MR3065873
- Salim, M. A. M., Kimmerle's conjecture for integral group rings of some alternating groups, Acta Math. Acad. Paedagog. Nyházi. (N.S.) (electronic only) 27 (2011), 9-22. (2011) Zbl1240.16047MR2813587
- Salim, M. A. M., 10.1080/00927870701545069, Commun. Algebra 35 (2007), 4198-4204. (2007) Zbl1161.16023MR2372329DOI10.1080/00927870701545069
- The GAP Group: GAP-Groups, Algorithms and Programming, Version 4.4, 2006, http:/www.gap-system.org.
- Weiss, A., Rigidity of -adic -torsion, Ann. Math. (2) 127 (1988), 317-332. (1988) Zbl0647.20007MR0932300
- Zassenhaus, H., On the torsion units of finite group rings, Studies in mathematics Lisbon (1974), 119-126. (1974) Zbl0313.16014MR0376747
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.