Extremely primitive groups and linear spaces

Haiyan Guan; Shenglin Zhou

Czechoslovak Mathematical Journal (2016)

  • Volume: 66, Issue: 2, page 445-455
  • ISSN: 0011-4642

Abstract

top
A non-regular primitive permutation group is called extremely primitive if a point stabilizer acts primitively on each of its nontrivial orbits. Let 𝒮 be a nontrivial finite regular linear space and G Aut ( 𝒮 ) . Suppose that G is extremely primitive on points and let rank ( G ) be the rank of G on points. We prove that rank ( G ) 4 with few exceptions. Moreover, we show that Soc ( G ) is neither a sporadic group nor an alternating group, and G = PSL ( 2 , q ) with q + 1 a Fermat prime if Soc ( G ) is a finite classical simple group.

How to cite

top

Guan, Haiyan, and Zhou, Shenglin. "Extremely primitive groups and linear spaces." Czechoslovak Mathematical Journal 66.2 (2016): 445-455. <http://eudml.org/doc/280092>.

@article{Guan2016,
abstract = {A non-regular primitive permutation group is called extremely primitive if a point stabilizer acts primitively on each of its nontrivial orbits. Let $\mathcal \{S\}$ be a nontrivial finite regular linear space and $G\le \{\rm Aut\}(\mathcal \{S\}).$ Suppose that $G$ is extremely primitive on points and let rank$(G)$ be the rank of $G$ on points. We prove that rank$(G)\ge 4$ with few exceptions. Moreover, we show that $\{\rm Soc\}(G)$ is neither a sporadic group nor an alternating group, and $G=\{\rm PSL\}(2,q)$ with $q+1$ a Fermat prime if $\{\rm Soc\}(G)$ is a finite classical simple group.},
author = {Guan, Haiyan, Zhou, Shenglin},
journal = {Czechoslovak Mathematical Journal},
keywords = {linear space; automorphism; point-primitive automorphism group; extremely primitive permutation group},
language = {eng},
number = {2},
pages = {445-455},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Extremely primitive groups and linear spaces},
url = {http://eudml.org/doc/280092},
volume = {66},
year = {2016},
}

TY - JOUR
AU - Guan, Haiyan
AU - Zhou, Shenglin
TI - Extremely primitive groups and linear spaces
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 2
SP - 445
EP - 455
AB - A non-regular primitive permutation group is called extremely primitive if a point stabilizer acts primitively on each of its nontrivial orbits. Let $\mathcal {S}$ be a nontrivial finite regular linear space and $G\le {\rm Aut}(\mathcal {S}).$ Suppose that $G$ is extremely primitive on points and let rank$(G)$ be the rank of $G$ on points. We prove that rank$(G)\ge 4$ with few exceptions. Moreover, we show that ${\rm Soc}(G)$ is neither a sporadic group nor an alternating group, and $G={\rm PSL}(2,q)$ with $q+1$ a Fermat prime if ${\rm Soc}(G)$ is a finite classical simple group.
LA - eng
KW - linear space; automorphism; point-primitive automorphism group; extremely primitive permutation group
UR - http://eudml.org/doc/280092
ER -

References

top
  1. Biliotti, M., Montinaro, A., Francot, E., 10.1007/s10623-014-9925-9, Des. Codes Cryptography 76 (2015), 135-171. (2015) MR3357239DOI10.1007/s10623-014-9925-9
  2. Bosma, W., Cannon, J., Playoust, C., 10.1006/jsco.1996.0125, J. Symb. Comput. 24 (1997), 235-265. (1997) Zbl0898.68039MR1484478DOI10.1006/jsco.1996.0125
  3. Buekenhout, F., Delandtsheer, A., Doyen, J., Kleidman, P. B., Liebeck, M. W., Saxl, J., Linear spaces with flag-transitive automorphism groups, Geom. Dedicata 36 (1990), 89-94. (1990) Zbl0707.51017MR1065214
  4. Burness, T. C., Praeger, C. E., Seress, Á., 10.1016/j.jpaa.2011.10.028, J. Pure Appl. Algebra 216 (2012), 1580-1610. (2012) Zbl1260.20003MR2899823DOI10.1016/j.jpaa.2011.10.028
  5. Burness, T. C., Praeger, C. E., Seress, Á., 10.1112/blms/bds038, Bull. Lond. Math. Soc. 44 (2012), 1147-1154. (2012) Zbl1264.20001MR3007647DOI10.1112/blms/bds038
  6. Camina, A. R., Neumann, P. M., Praeger, C. E., 10.1112/S0024611503014060, Proc. Lond. Math. Soc. (3) 87 (2003), 29-53. (2003) Zbl1031.05133MR1978569DOI10.1112/S0024611503014060
  7. Clapham, P. C., 10.1016/0012-365X(76)90055-8, Discrete Math. 14 (1976), 121-131. (1976) Zbl0323.05012MR0409210DOI10.1016/0012-365X(76)90055-8
  8. Delandtsheer, A., 2-designs with a group transitive on the pairs of intersecting lines, Simon Stevin 66 (1992), 107-112. (1992) Zbl0784.51006MR1198869
  9. Devillers, A., 10.1016/j.ejc.2006.09.003, Eur. J. Comb. 29 (2008), 268-272. (2008) Zbl1128.51004MR2368634DOI10.1016/j.ejc.2006.09.003
  10. Devillers, A., 10.2140/iig.2005.2.129, Innov. Incidence Geom. 2 (2005), 129-175. (2005) Zbl1095.51002MR2214719DOI10.2140/iig.2005.2.129
  11. Higman, D. G., McLaughlin, J. E., 10.1215/ijm/1255630883, Ill. J. Math. 5 (1961), 382-- 397. (1961) Zbl0104.14702MR0131216DOI10.1215/ijm/1255630883
  12. Huppert, B., Endliche Gruppen. I, Die Grundlehren der Mathematischen Wissenschaften 134 Springer, Berlin German (1967). (1967) Zbl0217.07201MR0224703
  13. Kantor, W. M., 10.1016/0097-3165(85)90022-6, J. Comb. Theory, Ser. A 38 (1985), 66-74. (1985) Zbl0559.05015MR0773556DOI10.1016/0097-3165(85)90022-6
  14. Liebeck, M. W., 10.1006/jcta.1998.2897, J. Comb. Theory, Ser. A 84 (1998), 196-235. (1998) Zbl0918.51009MR1652833DOI10.1006/jcta.1998.2897
  15. Mann, A., Praeger, C. E., Seress, Á., 10.4171/GGD/27, Groups Geom. Dyn. 1 (2007), 623-660. (2007) Zbl1141.20003MR2357486DOI10.4171/GGD/27
  16. Montinaro, A., 10.1002/jcd.21402, J. Comb. Des. 23 481-498 (2015). (2015) Zbl1331.05050MR3403763DOI10.1002/jcd.21402
  17. Praeger, C. E., Xu, M. Y., 10.1006/jctb.1993.1068, J. Comb. Theory, Ser. B 59 (1993), 245-266. (1993) Zbl0793.05072MR1244933DOI10.1006/jctb.1993.1068
  18. al., R. Wilson et, Atlas of Finite Group Representations. Version 3, Available at http://brauer.maths.qmul.ac.uk/Atlas/v3/. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.