Extremely primitive groups and linear spaces
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 2, page 445-455
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGuan, Haiyan, and Zhou, Shenglin. "Extremely primitive groups and linear spaces." Czechoslovak Mathematical Journal 66.2 (2016): 445-455. <http://eudml.org/doc/280092>.
@article{Guan2016,
abstract = {A non-regular primitive permutation group is called extremely primitive if a point stabilizer acts primitively on each of its nontrivial orbits. Let $\mathcal \{S\}$ be a nontrivial finite regular linear space and $G\le \{\rm Aut\}(\mathcal \{S\}).$ Suppose that $G$ is extremely primitive on points and let rank$(G)$ be the rank of $G$ on points. We prove that rank$(G)\ge 4$ with few exceptions. Moreover, we show that $\{\rm Soc\}(G)$ is neither a sporadic group nor an alternating group, and $G=\{\rm PSL\}(2,q)$ with $q+1$ a Fermat prime if $\{\rm Soc\}(G)$ is a finite classical simple group.},
author = {Guan, Haiyan, Zhou, Shenglin},
journal = {Czechoslovak Mathematical Journal},
keywords = {linear space; automorphism; point-primitive automorphism group; extremely primitive permutation group},
language = {eng},
number = {2},
pages = {445-455},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Extremely primitive groups and linear spaces},
url = {http://eudml.org/doc/280092},
volume = {66},
year = {2016},
}
TY - JOUR
AU - Guan, Haiyan
AU - Zhou, Shenglin
TI - Extremely primitive groups and linear spaces
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 2
SP - 445
EP - 455
AB - A non-regular primitive permutation group is called extremely primitive if a point stabilizer acts primitively on each of its nontrivial orbits. Let $\mathcal {S}$ be a nontrivial finite regular linear space and $G\le {\rm Aut}(\mathcal {S}).$ Suppose that $G$ is extremely primitive on points and let rank$(G)$ be the rank of $G$ on points. We prove that rank$(G)\ge 4$ with few exceptions. Moreover, we show that ${\rm Soc}(G)$ is neither a sporadic group nor an alternating group, and $G={\rm PSL}(2,q)$ with $q+1$ a Fermat prime if ${\rm Soc}(G)$ is a finite classical simple group.
LA - eng
KW - linear space; automorphism; point-primitive automorphism group; extremely primitive permutation group
UR - http://eudml.org/doc/280092
ER -
References
top- Biliotti, M., Montinaro, A., Francot, E., 10.1007/s10623-014-9925-9, Des. Codes Cryptography 76 (2015), 135-171. (2015) MR3357239DOI10.1007/s10623-014-9925-9
- Bosma, W., Cannon, J., Playoust, C., 10.1006/jsco.1996.0125, J. Symb. Comput. 24 (1997), 235-265. (1997) Zbl0898.68039MR1484478DOI10.1006/jsco.1996.0125
- Buekenhout, F., Delandtsheer, A., Doyen, J., Kleidman, P. B., Liebeck, M. W., Saxl, J., Linear spaces with flag-transitive automorphism groups, Geom. Dedicata 36 (1990), 89-94. (1990) Zbl0707.51017MR1065214
- Burness, T. C., Praeger, C. E., Seress, Á., 10.1016/j.jpaa.2011.10.028, J. Pure Appl. Algebra 216 (2012), 1580-1610. (2012) Zbl1260.20003MR2899823DOI10.1016/j.jpaa.2011.10.028
- Burness, T. C., Praeger, C. E., Seress, Á., 10.1112/blms/bds038, Bull. Lond. Math. Soc. 44 (2012), 1147-1154. (2012) Zbl1264.20001MR3007647DOI10.1112/blms/bds038
- Camina, A. R., Neumann, P. M., Praeger, C. E., 10.1112/S0024611503014060, Proc. Lond. Math. Soc. (3) 87 (2003), 29-53. (2003) Zbl1031.05133MR1978569DOI10.1112/S0024611503014060
- Clapham, P. C., 10.1016/0012-365X(76)90055-8, Discrete Math. 14 (1976), 121-131. (1976) Zbl0323.05012MR0409210DOI10.1016/0012-365X(76)90055-8
- Delandtsheer, A., 2-designs with a group transitive on the pairs of intersecting lines, Simon Stevin 66 (1992), 107-112. (1992) Zbl0784.51006MR1198869
- Devillers, A., 10.1016/j.ejc.2006.09.003, Eur. J. Comb. 29 (2008), 268-272. (2008) Zbl1128.51004MR2368634DOI10.1016/j.ejc.2006.09.003
- Devillers, A., 10.2140/iig.2005.2.129, Innov. Incidence Geom. 2 (2005), 129-175. (2005) Zbl1095.51002MR2214719DOI10.2140/iig.2005.2.129
- Higman, D. G., McLaughlin, J. E., 10.1215/ijm/1255630883, Ill. J. Math. 5 (1961), 382-- 397. (1961) Zbl0104.14702MR0131216DOI10.1215/ijm/1255630883
- Huppert, B., Endliche Gruppen. I, Die Grundlehren der Mathematischen Wissenschaften 134 Springer, Berlin German (1967). (1967) Zbl0217.07201MR0224703
- Kantor, W. M., 10.1016/0097-3165(85)90022-6, J. Comb. Theory, Ser. A 38 (1985), 66-74. (1985) Zbl0559.05015MR0773556DOI10.1016/0097-3165(85)90022-6
- Liebeck, M. W., 10.1006/jcta.1998.2897, J. Comb. Theory, Ser. A 84 (1998), 196-235. (1998) Zbl0918.51009MR1652833DOI10.1006/jcta.1998.2897
- Mann, A., Praeger, C. E., Seress, Á., 10.4171/GGD/27, Groups Geom. Dyn. 1 (2007), 623-660. (2007) Zbl1141.20003MR2357486DOI10.4171/GGD/27
- Montinaro, A., 10.1002/jcd.21402, J. Comb. Des. 23 481-498 (2015). (2015) Zbl1331.05050MR3403763DOI10.1002/jcd.21402
- Praeger, C. E., Xu, M. Y., 10.1006/jctb.1993.1068, J. Comb. Theory, Ser. B 59 (1993), 245-266. (1993) Zbl0793.05072MR1244933DOI10.1006/jctb.1993.1068
- al., R. Wilson et, Atlas of Finite Group Representations. Version 3, Available at http://brauer.maths.qmul.ac.uk/Atlas/v3/.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.