Normal number constructions for Cantor series with slowly growing bases

Dylan Airey; Bill Mance; Joseph Vandehey

Czechoslovak Mathematical Journal (2016)

  • Volume: 66, Issue: 2, page 465-480
  • ISSN: 0011-4642

Abstract

top
Let Q = ( q n ) n = 1 be a sequence of bases with q i 2 . In the case when the q i are slowly growing and satisfy some additional weak conditions, we provide a construction of a number whose Q -Cantor series expansion is both Q -normal and Q -distribution normal. Moreover, this construction will result in a computable number provided we have some additional conditions on the computability of Q , and from this construction we can provide computable constructions of numbers with atypical normality properties.

How to cite

top

Airey, Dylan, Mance, Bill, and Vandehey, Joseph. "Normal number constructions for Cantor series with slowly growing bases." Czechoslovak Mathematical Journal 66.2 (2016): 465-480. <http://eudml.org/doc/280093>.

@article{Airey2016,
abstract = {Let $Q=(q_n)_\{n=1\}^\infty $ be a sequence of bases with $q_i\ge 2$. In the case when the $q_i$ are slowly growing and satisfy some additional weak conditions, we provide a construction of a number whose $Q$-Cantor series expansion is both $Q$-normal and $Q$-distribution normal. Moreover, this construction will result in a computable number provided we have some additional conditions on the computability of $Q$, and from this construction we can provide computable constructions of numbers with atypical normality properties.},
author = {Airey, Dylan, Mance, Bill, Vandehey, Joseph},
journal = {Czechoslovak Mathematical Journal},
keywords = {Cantor series; normal number; Cantor series; normal numbers; Hausdorff dimension},
language = {eng},
number = {2},
pages = {465-480},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Normal number constructions for Cantor series with slowly growing bases},
url = {http://eudml.org/doc/280093},
volume = {66},
year = {2016},
}

TY - JOUR
AU - Airey, Dylan
AU - Mance, Bill
AU - Vandehey, Joseph
TI - Normal number constructions for Cantor series with slowly growing bases
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 2
SP - 465
EP - 480
AB - Let $Q=(q_n)_{n=1}^\infty $ be a sequence of bases with $q_i\ge 2$. In the case when the $q_i$ are slowly growing and satisfy some additional weak conditions, we provide a construction of a number whose $Q$-Cantor series expansion is both $Q$-normal and $Q$-distribution normal. Moreover, this construction will result in a computable number provided we have some additional conditions on the computability of $Q$, and from this construction we can provide computable constructions of numbers with atypical normality properties.
LA - eng
KW - Cantor series; normal number; Cantor series; normal numbers; Hausdorff dimension
UR - http://eudml.org/doc/280093
ER -

References

top
  1. Airey, D., Mance, B., 10.4171/JFG/33, J. Fractal Geom. 3 (2016), 163-186. (2016) MR3501345DOI10.4171/JFG/33
  2. Airey, D., Mance, B., 10.1016/j.indag.2015.02.002, Indag. Math., New Ser. 26 (2015), 476-484. (2015) Zbl1326.11036MR3341809DOI10.1016/j.indag.2015.02.002
  3. Airey, D., Mance, B., Vandehey, J., Normality preserving operations for Cantor series expansions and associated fractals II, New York J. Math. (electronic only) 21 (2015), 1311-1326. (2015) MR3441645
  4. Altomare, C., Mance, B., 10.1007/s00605-010-0213-0, Monatsh. Math. 164 (2011), 1-22. (2011) Zbl1276.11128MR2827169DOI10.1007/s00605-010-0213-0
  5. Becher, V., Figueira, S., Picchi, R., 10.1016/j.tcs.2007.02.022, Theor. Comput. Sci. 377 (2007), 126-138. (2007) Zbl1117.03051MR2323391DOI10.1016/j.tcs.2007.02.022
  6. Cantor, G., Über die einfachen Zahlensysteme, Zeitschrift für Mathematik und Physik 14 (1869), 121-128 German. (1869) 
  7. Champernowne, D. G., 10.1112/jlms/s1-8.4.254, J. Lond. Math. Soc. 8 (1933), 254-260. (1933) Zbl0007.33701MR1573965DOI10.1112/jlms/s1-8.4.254
  8. Erdős, P., Rényi, A., On Cantor’s series with convergent 1 / q n , Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math. 2 (1959), 93-109. (1959) Zbl0095.26501MR0126414
  9. Erdős, P., Rényi, A., 10.1007/BF02063287, Acta Math. Acad. Sci. Hung. 10 (1959), 21-29. (1959) Zbl0088.25804MR0107631DOI10.1007/BF02063287
  10. Galambos, J., 10.1007/BFb0081642, Lecture Notes in Mathematics 502 Springer, Berlin (1976). (1976) Zbl0322.10002MR0568141DOI10.1007/BFb0081642
  11. Kuipers, L., Niederreiter, H., Uniform Distribution of Sequences, Pure and Applied Mathematics John Wiley & Sons, New York (1974). (1974) Zbl0281.10001MR0419394
  12. Mance, B., 10.1007/s10474-014-0456-7, Acta Math. Hung. 144 (2014), 449-493. (2014) Zbl1320.11069MR3274409DOI10.1007/s10474-014-0456-7
  13. Mance, B., Construction of normal numbers with respect to the Q -Cantor series expansion for certain Q , Acta Arith. 148 (2011), 135-152. (2011) Zbl1239.11082MR2786161
  14. Rényi, A., Probabilistic methods in number theory, Proc. Int. Congr. Math. (1958), 529-539. (1958) MR0118707
  15. Rényi, A., On the distribution of the digits in Cantor's series, 7 Mat. Lapok (1956), 77-100 Hungarian. Russian, English summaries. (1956) Zbl0075.03703MR0099968
  16. Rényi, A., 10.1007/BF02024393, Acta Math. Acad. Sci. Hung. 6 (1955), 285-335. (1955) Zbl0067.10401MR0081008DOI10.1007/BF02024393
  17. Sierpiński, W., 10.24033/bsmf.977, Bull. Soc. Math. Fr. 45 (1917), 125-153 French. (1917) MR1504764DOI10.24033/bsmf.977
  18. Turán, P., On the distribution of ``digits'' in Cantor systems, Mat. Lapok 7 (1956), 71-76 Hungarian. Russian, English summaries. (1956) Zbl0075.25202MR0099967
  19. Turing, A. M., Collected Works of A. M. Turing: Pure Mathematics, North-Holland Publishing, Amsterdam J. L. Britton (1992). (1992) Zbl0751.01017MR1150052

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.