Normal number constructions for Cantor series with slowly growing bases
Dylan Airey; Bill Mance; Joseph Vandehey
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 2, page 465-480
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAirey, Dylan, Mance, Bill, and Vandehey, Joseph. "Normal number constructions for Cantor series with slowly growing bases." Czechoslovak Mathematical Journal 66.2 (2016): 465-480. <http://eudml.org/doc/280093>.
@article{Airey2016,
abstract = {Let $Q=(q_n)_\{n=1\}^\infty $ be a sequence of bases with $q_i\ge 2$. In the case when the $q_i$ are slowly growing and satisfy some additional weak conditions, we provide a construction of a number whose $Q$-Cantor series expansion is both $Q$-normal and $Q$-distribution normal. Moreover, this construction will result in a computable number provided we have some additional conditions on the computability of $Q$, and from this construction we can provide computable constructions of numbers with atypical normality properties.},
author = {Airey, Dylan, Mance, Bill, Vandehey, Joseph},
journal = {Czechoslovak Mathematical Journal},
keywords = {Cantor series; normal number; Cantor series; normal numbers; Hausdorff dimension},
language = {eng},
number = {2},
pages = {465-480},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Normal number constructions for Cantor series with slowly growing bases},
url = {http://eudml.org/doc/280093},
volume = {66},
year = {2016},
}
TY - JOUR
AU - Airey, Dylan
AU - Mance, Bill
AU - Vandehey, Joseph
TI - Normal number constructions for Cantor series with slowly growing bases
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 2
SP - 465
EP - 480
AB - Let $Q=(q_n)_{n=1}^\infty $ be a sequence of bases with $q_i\ge 2$. In the case when the $q_i$ are slowly growing and satisfy some additional weak conditions, we provide a construction of a number whose $Q$-Cantor series expansion is both $Q$-normal and $Q$-distribution normal. Moreover, this construction will result in a computable number provided we have some additional conditions on the computability of $Q$, and from this construction we can provide computable constructions of numbers with atypical normality properties.
LA - eng
KW - Cantor series; normal number; Cantor series; normal numbers; Hausdorff dimension
UR - http://eudml.org/doc/280093
ER -
References
top- Airey, D., Mance, B., 10.4171/JFG/33, J. Fractal Geom. 3 (2016), 163-186. (2016) MR3501345DOI10.4171/JFG/33
- Airey, D., Mance, B., 10.1016/j.indag.2015.02.002, Indag. Math., New Ser. 26 (2015), 476-484. (2015) Zbl1326.11036MR3341809DOI10.1016/j.indag.2015.02.002
- Airey, D., Mance, B., Vandehey, J., Normality preserving operations for Cantor series expansions and associated fractals II, New York J. Math. (electronic only) 21 (2015), 1311-1326. (2015) MR3441645
- Altomare, C., Mance, B., 10.1007/s00605-010-0213-0, Monatsh. Math. 164 (2011), 1-22. (2011) Zbl1276.11128MR2827169DOI10.1007/s00605-010-0213-0
- Becher, V., Figueira, S., Picchi, R., 10.1016/j.tcs.2007.02.022, Theor. Comput. Sci. 377 (2007), 126-138. (2007) Zbl1117.03051MR2323391DOI10.1016/j.tcs.2007.02.022
- Cantor, G., Über die einfachen Zahlensysteme, Zeitschrift für Mathematik und Physik 14 (1869), 121-128 German. (1869)
- Champernowne, D. G., 10.1112/jlms/s1-8.4.254, J. Lond. Math. Soc. 8 (1933), 254-260. (1933) Zbl0007.33701MR1573965DOI10.1112/jlms/s1-8.4.254
- Erdős, P., Rényi, A., On Cantor’s series with convergent , Ann. Univ. Sci. Budap. Rolando Eötvös, Sect. Math. 2 (1959), 93-109. (1959) Zbl0095.26501MR0126414
- Erdős, P., Rényi, A., 10.1007/BF02063287, Acta Math. Acad. Sci. Hung. 10 (1959), 21-29. (1959) Zbl0088.25804MR0107631DOI10.1007/BF02063287
- Galambos, J., 10.1007/BFb0081642, Lecture Notes in Mathematics 502 Springer, Berlin (1976). (1976) Zbl0322.10002MR0568141DOI10.1007/BFb0081642
- Kuipers, L., Niederreiter, H., Uniform Distribution of Sequences, Pure and Applied Mathematics John Wiley & Sons, New York (1974). (1974) Zbl0281.10001MR0419394
- Mance, B., 10.1007/s10474-014-0456-7, Acta Math. Hung. 144 (2014), 449-493. (2014) Zbl1320.11069MR3274409DOI10.1007/s10474-014-0456-7
- Mance, B., Construction of normal numbers with respect to the -Cantor series expansion for certain , Acta Arith. 148 (2011), 135-152. (2011) Zbl1239.11082MR2786161
- Rényi, A., Probabilistic methods in number theory, Proc. Int. Congr. Math. (1958), 529-539. (1958) MR0118707
- Rényi, A., On the distribution of the digits in Cantor's series, 7 Mat. Lapok (1956), 77-100 Hungarian. Russian, English summaries. (1956) Zbl0075.03703MR0099968
- Rényi, A., 10.1007/BF02024393, Acta Math. Acad. Sci. Hung. 6 (1955), 285-335. (1955) Zbl0067.10401MR0081008DOI10.1007/BF02024393
- Sierpiński, W., 10.24033/bsmf.977, Bull. Soc. Math. Fr. 45 (1917), 125-153 French. (1917) MR1504764DOI10.24033/bsmf.977
- Turán, P., On the distribution of ``digits'' in Cantor systems, Mat. Lapok 7 (1956), 71-76 Hungarian. Russian, English summaries. (1956) Zbl0075.25202MR0099967
- Turing, A. M., Collected Works of A. M. Turing: Pure Mathematics, North-Holland Publishing, Amsterdam J. L. Britton (1992). (1992) Zbl0751.01017MR1150052
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.