Injectivity of sections of convex harmonic mappings and convolution theorems

Liulan Li; Saminathan Ponnusamy

Czechoslovak Mathematical Journal (2016)

  • Volume: 66, Issue: 2, page 331-350
  • ISSN: 0011-4642

Abstract

top
We consider the class 0 of sense-preserving harmonic functions f = h + g ¯ defined in the unit disk | z | < 1 and normalized so that h ( 0 ) = 0 = h ' ( 0 ) - 1 and g ( 0 ) = 0 = g ' ( 0 ) , where h and g are analytic in the unit disk. In the first part of the article we present two classes 𝒫 H 0 ( α ) and 𝒢 H 0 ( β ) of functions from 0 and show that if f 𝒫 H 0 ( α ) and F 𝒢 H 0 ( β ) , then the harmonic convolution is a univalent and close-to-convex harmonic function in the unit disk provided certain conditions for parameters α and β are satisfied. In the second part we study the harmonic sections (partial sums) s n , n ( f ) ( z ) = s n ( h ) ( z ) + s n ( g ) ( z ) ¯ , where f = h + g ¯ 0 , s n ( h ) and s n ( g ) denote the n -th partial sums of h and g , respectively. We prove, among others, that if f = h + g ¯ 0 is a univalent harmonic convex mapping, then s n , n ( f ) is univalent and close-to-convex in the disk | z | < 1 / 4 for n 2 , and s n , n ( f ) is also convex in the disk | z | < 1 / 4 for n 2 and n 3 . Moreover, we show that the section s 3 , 3 ( f ) of f 𝒞 H 0 is not convex in the disk | z | < 1 / 4 but it is convex in a smaller disk.

How to cite

top

Li, Liulan, and Ponnusamy, Saminathan. "Injectivity of sections of convex harmonic mappings and convolution theorems." Czechoslovak Mathematical Journal 66.2 (2016): 331-350. <http://eudml.org/doc/280103>.

@article{Li2016,
abstract = {We consider the class $\{\mathcal \{H\}\}_0$ of sense-preserving harmonic functions $f=h+\overline\{g\}$ defined in the unit disk $|z|<1$ and normalized so that $h(0)=0=h^\{\prime \}(0)-1$ and $g(0)=0=g^\{\prime \}(0)$, where $h$ and $g$ are analytic in the unit disk. In the first part of the article we present two classes $\mathcal \{P\}_H^0(\alpha )$ and $\mathcal \{G\}_H^0(\beta )$ of functions from $\{\mathcal \{H\}\}_0$ and show that if $f\in \mathcal \{P\}_H^0(\alpha )$ and $F\in \mathcal \{G\}_H^0(\beta )$, then the harmonic convolution is a univalent and close-to-convex harmonic function in the unit disk provided certain conditions for parameters $\alpha $ and $\beta $ are satisfied. In the second part we study the harmonic sections (partial sums) \[ s\_\{n, n\}(f)(z)=s\_n(h)(z)+\overline\{s\_n(g)(z)\}, \] where $f=h+\overline\{g\}\in \{\mathcal \{H\}\}_0$, $s_n(h)$ and $s_n(g)$ denote the $n$-th partial sums of $h$ and $g$, respectively. We prove, among others, that if $f=h+\overline\{g\}\in \{\mathcal \{H\}\}_0$ is a univalent harmonic convex mapping, then $s_\{n, n\}(f)$ is univalent and close-to-convex in the disk $|z|< 1/4$ for $n\ge 2$, and $s_\{n, n\}(f)$ is also convex in the disk $|z|< 1/4$ for $n\ge 2$ and $n\ne 3$. Moreover, we show that the section $s_\{3,3\}(f)$ of $f\in \{\mathcal \{C\}\}_H^0$ is not convex in the disk $|z|<1/4$ but it is convex in a smaller disk.},
author = {Li, Liulan, Ponnusamy, Saminathan},
journal = {Czechoslovak Mathematical Journal},
keywords = {harmonic mapping; partial sum; univalent mapping; convex mapping; starlike mapping; close-to-convex mapping; harmonic convolution; direction convexity preserving map; close-to-convex; convex; starlike and univalent harmonic mappings; partial sum},
language = {eng},
number = {2},
pages = {331-350},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Injectivity of sections of convex harmonic mappings and convolution theorems},
url = {http://eudml.org/doc/280103},
volume = {66},
year = {2016},
}

TY - JOUR
AU - Li, Liulan
AU - Ponnusamy, Saminathan
TI - Injectivity of sections of convex harmonic mappings and convolution theorems
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 2
SP - 331
EP - 350
AB - We consider the class ${\mathcal {H}}_0$ of sense-preserving harmonic functions $f=h+\overline{g}$ defined in the unit disk $|z|<1$ and normalized so that $h(0)=0=h^{\prime }(0)-1$ and $g(0)=0=g^{\prime }(0)$, where $h$ and $g$ are analytic in the unit disk. In the first part of the article we present two classes $\mathcal {P}_H^0(\alpha )$ and $\mathcal {G}_H^0(\beta )$ of functions from ${\mathcal {H}}_0$ and show that if $f\in \mathcal {P}_H^0(\alpha )$ and $F\in \mathcal {G}_H^0(\beta )$, then the harmonic convolution is a univalent and close-to-convex harmonic function in the unit disk provided certain conditions for parameters $\alpha $ and $\beta $ are satisfied. In the second part we study the harmonic sections (partial sums) \[ s_{n, n}(f)(z)=s_n(h)(z)+\overline{s_n(g)(z)}, \] where $f=h+\overline{g}\in {\mathcal {H}}_0$, $s_n(h)$ and $s_n(g)$ denote the $n$-th partial sums of $h$ and $g$, respectively. We prove, among others, that if $f=h+\overline{g}\in {\mathcal {H}}_0$ is a univalent harmonic convex mapping, then $s_{n, n}(f)$ is univalent and close-to-convex in the disk $|z|< 1/4$ for $n\ge 2$, and $s_{n, n}(f)$ is also convex in the disk $|z|< 1/4$ for $n\ge 2$ and $n\ne 3$. Moreover, we show that the section $s_{3,3}(f)$ of $f\in {\mathcal {C}}_H^0$ is not convex in the disk $|z|<1/4$ but it is convex in a smaller disk.
LA - eng
KW - harmonic mapping; partial sum; univalent mapping; convex mapping; starlike mapping; close-to-convex mapping; harmonic convolution; direction convexity preserving map; close-to-convex; convex; starlike and univalent harmonic mappings; partial sum
UR - http://eudml.org/doc/280103
ER -

References

top
  1. Bharanedhar, S. V., Ponnusamy, S., Uniform close-to-convexity radius of sections of functions in the close-to-convex family, J. Ramanujan Math. Soc. 29 (2014), 243-251. (2014) Zbl1301.30011MR3265059
  2. Clunie, J., Sheil-Small, T., 10.5186/aasfm.1984.0905, Ann. Acad. Sci. Fenn., Ser. A I, Math. 9 (1984), 3-25. (1984) Zbl0506.30007MR0752388DOI10.5186/aasfm.1984.0905
  3. Dorff, M., 10.1080/17476930108815381, Complex Variables, Theory Appl. 45 (2001), 263-271. (2001) Zbl1023.30019MR1909021DOI10.1080/17476930108815381
  4. Dorff, M., Nowak, M., Wo{ł}oszkiewicz, M., 10.1080/17476933.2010.487211, Complex Var. Elliptic Equ. 57 (2012), 489-503. (2012) Zbl1250.31001MR2903478DOI10.1080/17476933.2010.487211
  5. Dorff, M. J., Rolf, J. S., Anamorphosis, mapping problems, and harmonic univalent functions, Explorations in Complex Analysis Classr. Res. Mater. Ser. The Mathematical Association of America, Washington (2012), 197-269 M. A. Brilleslyper et al. (2012) Zbl1303.30010MR2963968
  6. Duren, P. L., Harmonic Mappings in the Plane, Cambridge Tracts in Mathematics 156 Cambridge University Press, Cambridge (2004). (2004) Zbl1055.31001MR2048384
  7. Duren, P. L., A survey of harmonic mappings in the plane, Texas Tech. Univ., Math. Series, Visiting Scholars Lectures 18 (1990-1992), 1-15. (1990) MR2048384
  8. Duren, P. L., Univalent Functions, Grundlehren der Mathematischen Wissenschaften 259. A Series of Comprehensive Studies in Mathematics Springer, New York (1983). (1983) Zbl0514.30001MR0708494
  9. Fournier, R., Silverman, H., 10.1090/S0002-9939-1991-1047000-3, Proc. Am. Math. Soc. 112 (1991), 101-107. (1991) Zbl0725.30007MR1047000DOI10.1090/S0002-9939-1991-1047000-3
  10. Goodman, A. W., Schoenberg, I. J., 10.1007/BF02790196, J. Anal. Math. 44 (1985), 200-204. (1985) Zbl0576.30010MR0801293DOI10.1007/BF02790196
  11. Hengartner, W., Schober, G., 10.1007/BF02567334, Comment. Math. Helv. 45 (1970), 303-314. (1970) Zbl0203.07604MR0277703DOI10.1007/BF02567334
  12. Iliev, L., Classical extremal problems for univalent functions, Complex Analysis Banach Center Publ. 11. Polish Academy of Sciences, Institute of Mathematics. PWN-Polish Scientific Publishers, Warsaw J. Ławrynowicz et al. (1983), 89-110. (1983) Zbl0538.30016MR0737754
  13. Lewy, H., 10.1090/S0002-9904-1936-06397-4, Bull. Am. Math. Soc. 42 (1936), 689-692. (1936) Zbl0015.15903MR1563404DOI10.1090/S0002-9904-1936-06397-4
  14. Li, L., Ponnusamy, S., 10.1524/anly.2013.1170, Analysis, München 33 (2013), 159-176. (2013) Zbl1286.30011MR3082279DOI10.1524/anly.2013.1170
  15. Li, L., Ponnusamy, S., 10.1016/j.jmaa.2013.06.021, J. Math. Anal. Appl. 408 (2013), 589-596. (2013) Zbl1307.31002MR3085055DOI10.1016/j.jmaa.2013.06.021
  16. Li, L., Ponnusamy, S., 10.1016/j.na.2013.05.016, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 89 (2013), 276-283. (2013) Zbl1279.30038MR3073331DOI10.1016/j.na.2013.05.016
  17. Li, L., Ponnusamy, S., 10.1080/17476933.2012.702111, Complex Var. Elliptic Equ. 58 (2013), 1647-1653. (2013) Zbl1287.30004MR3170725DOI10.1080/17476933.2012.702111
  18. MacGregor, T. H., 10.1090/S0002-9947-1962-0140674-7, Trans. Am. Math. Soc. 104 (1962), 532-537. (1962) Zbl0106.04805MR0140674DOI10.1090/S0002-9947-1962-0140674-7
  19. Miki, Y., 10.2969/jmsj/00830256, J. Math. Soc. Japan 8 (1956), 256-268. (1956) Zbl0072.29402MR0091343DOI10.2969/jmsj/00830256
  20. Obradovi{ć}, M., Ponnusamy, S., 10.1216/RMJ-2014-44-3-1003, Rocky Mt. J. Math. 44 (2014), 1003-1014. (2014) Zbl1298.30012MR3264494DOI10.1216/RMJ-2014-44-3-1003
  21. Obradovi{ć}, M., Ponnusamy, S., Injectivity and starlikeness of sections of a class of univalent functions, Complex Analysis and Dynamical Systems V. Proc. of the 5th Int. Conf. On complex analysis and dynamical systems Israel, 2011. Contemp. Math. 591 AMS Providence, Ramat Gan: Bar-Ilan University (2013), 195-203 M. Agranovsky et al. (2013) Zbl1320.30031MR3155688
  22. Obradovi{ć}, M., Ponnusami, S., 10.1134/S0037446611020121, Sib. Math. J. 52 (2011), 291-302 translation from Sibirsk. Mat. Zh. 52 (2011), 371-384. (2011) MR2841555DOI10.1134/S0037446611020121
  23. Obradovich, M., Ponnusami, S., Wirths, K.-J., Coefficient characterizations and sections for some univalent functions, Sib. Math. J. 54 (2013), 679-696 translation from Sib. Mat. Zh. 54 (2013), 852-870. (2013) MR3137152
  24. Pommerenke, C., Univalent Functions. With a chapter on quadratic differentials by Gerd Jensen, Studia Mathematica/Mathematische Lehrbücher. Band 25 Vandenhoeck & Ruprecht, Göttingen (1975). (1975) Zbl0298.30014MR0507768
  25. Ponnusamy, S., 10.1112/jlms/51.1.93, J. Lond. Math. Soc., (2) Ser. 51 (1995), 93-104. (1995) Zbl0814.30017MR1310724DOI10.1112/jlms/51.1.93
  26. Ponnusamy, S., Rasila, A., Planar harmonic and quasiregular mappings, Topics in Modern Function Theory. Based on mini-courses of the CMFT workshop On computational methods and function theory, Guwahati, India, 2008 Ramanujan Math. Soc. Lect. Notes Ser. 19 Ramanujan Mathematical Society, Mysore (2013), 267-333 S. Ruscheweyh et al. (2013) Zbl1318.30039MR3220953
  27. Ponnusamy, S., Sahoo, S. K., Yanagihara, H., 10.1016/j.na.2013.09.009, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 95 (2014), 219-228. (2014) Zbl1291.30096MR3130518DOI10.1016/j.na.2013.09.009
  28. Robertson, M. S., 10.2307/1968770, Ann. Math. (2) 42 (1941), 829-838. (1941) MR0004905DOI10.2307/1968770
  29. Robertson, M. S., 10.2307/2370963, Am. J. Math. 58 (1936), 465-472. (1936) Zbl0014.12002MR1507169DOI10.2307/2370963
  30. Royster, W. C., Ziegler, M., Univalent functions convex in one direction, Publ. Math. Debrecen 23 (1976), 339-345. (1976) Zbl0365.30005MR0425101
  31. Ruscheweyh, S., Convolutions in geometric function theory: Recent results and open problems, Univalent Functions, Fractional Calculus, and Their Applications Ellis Horwood Series in Mathematics and Its Applications Horwood, Chichester, Halsted Press (1989), 267-282 H. M. Srivastava et al. (1989) Zbl0696.30019MR1199156
  32. Ruscheweyh, S., 10.1137/0519107, SIAM J. Math. Anal. 19 (1988), 1442-1449. (1988) Zbl0661.30012MR0965264DOI10.1137/0519107
  33. Ruscheweyh, S., Salinas, L. C., 10.5186/aasfm.1989.1427, Ann. Acad. Sci. Fenn., Ser. A I, Math. 14 (1989), 63-73. (1989) MR0997971DOI10.5186/aasfm.1989.1427
  34. Silverman, H., 10.1090/S0002-9939-1988-0942638-3, Proc. Am. Math. Soc. 104 (1988), 1191-1196. (1988) Zbl0692.30013MR0942638DOI10.1090/S0002-9939-1988-0942638-3
  35. Singh, R., 10.1017/S1446788700007874, J. Aust. Math. Soc. 11 (1970), 407-410. (1970) Zbl0215.12502MR0281902DOI10.1017/S1446788700007874
  36. Szegő, G., 10.1007/BF01448843, Math. Ann. 100 German (1928), 188-211. (1928) MR1512482DOI10.1007/BF01448843

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.