Some characterizations of harmonic Bloch and Besov spaces

Xi Fu; Bowen Lu

Czechoslovak Mathematical Journal (2016)

  • Volume: 66, Issue: 2, page 417-430
  • ISSN: 0011-4642

Abstract

top
The relationship between weighted Lipschitz functions and analytic Bloch spaces has attracted much attention. In this paper, we define harmonic ω - α -Bloch space and characterize it in terms of ω ( ( 1 - | x | 2 ) β ( 1 - | y | 2 ) α - β ) | f ( x ) - f ( y ) x - y | and ω ( ( 1 - | x | 2 ) β ( 1 - | y | 2 ) α - β ) | f ( x ) - f ( y ) | x | y - x ' | where ω is a majorant. Similar results are extended to harmonic little ω - α -Bloch and Besov spaces. Our results are generalizations of the corresponding ones in G. Ren, U. Kähler (2005).

How to cite

top

Fu, Xi, and Lu, Bowen. "Some characterizations of harmonic Bloch and Besov spaces." Czechoslovak Mathematical Journal 66.2 (2016): 417-430. <http://eudml.org/doc/280106>.

@article{Fu2016,
abstract = {The relationship between weighted Lipschitz functions and analytic Bloch spaces has attracted much attention. In this paper, we define harmonic $\omega $-$\alpha $-Bloch space and characterize it in terms of \[ \omega ((1-|x|^2)^\beta (1-|y|^2)^\{\alpha - \beta \}) \Big | \frac\{f(x)-f(y)\}\{x-y\}\Big | \] and \[ \omega ((1-|x|^2)^\beta (1-|y|^2)^\{\alpha - \beta \}) \Big | \frac\{f(x)-f(y)\}\{|x|y-x^\{\prime \}\}\Big | \] where $\omega $ is a majorant. Similar results are extended to harmonic little $\omega $-$\alpha $-Bloch and Besov spaces. Our results are generalizations of the corresponding ones in G. Ren, U. Kähler (2005).},
author = {Fu, Xi, Lu, Bowen},
journal = {Czechoslovak Mathematical Journal},
keywords = {harmonic function; Bloch space; Besov space; majorant},
language = {eng},
number = {2},
pages = {417-430},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some characterizations of harmonic Bloch and Besov spaces},
url = {http://eudml.org/doc/280106},
volume = {66},
year = {2016},
}

TY - JOUR
AU - Fu, Xi
AU - Lu, Bowen
TI - Some characterizations of harmonic Bloch and Besov spaces
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 2
SP - 417
EP - 430
AB - The relationship between weighted Lipschitz functions and analytic Bloch spaces has attracted much attention. In this paper, we define harmonic $\omega $-$\alpha $-Bloch space and characterize it in terms of \[ \omega ((1-|x|^2)^\beta (1-|y|^2)^{\alpha - \beta }) \Big | \frac{f(x)-f(y)}{x-y}\Big | \] and \[ \omega ((1-|x|^2)^\beta (1-|y|^2)^{\alpha - \beta }) \Big | \frac{f(x)-f(y)}{|x|y-x^{\prime }}\Big | \] where $\omega $ is a majorant. Similar results are extended to harmonic little $\omega $-$\alpha $-Bloch and Besov spaces. Our results are generalizations of the corresponding ones in G. Ren, U. Kähler (2005).
LA - eng
KW - harmonic function; Bloch space; Besov space; majorant
UR - http://eudml.org/doc/280106
ER -

References

top
  1. Chen, S., Ponnusamy, S., Rasila, A., 10.1007/s00209-014-1361-z, Math. Z. 279 (2015), 163-183. (2015) Zbl1314.30116MR3299847DOI10.1007/s00209-014-1361-z
  2. Choe, B. R., Koo, H., Yi, H., 10.1006/jmaa.2000.7438, J. Math. Anal. Appl. 260 (2001), 100-123. (2001) Zbl0984.31004MR1843970DOI10.1006/jmaa.2000.7438
  3. Choi, E. S., Na, K., 10.1016/j.jmaa.2008.11.085, J. Math. Anal. Appl. 353 (2009), 375-385. (2009) Zbl1162.31003MR2508875DOI10.1016/j.jmaa.2008.11.085
  4. Dyakonov, K. M., 10.1007/BF02392692, Acta Math. 178 (1997), 143-167. (1997) Zbl0898.30040MR1459259DOI10.1007/BF02392692
  5. Jevtić, M., Pavlović, M., 10.2307/2161125, Proc. Amer. Math. Soc. 123 (1995), 1385-1392. (1995) Zbl0833.32002MR1264815DOI10.2307/2161125
  6. Li, S., 10.4134/BKMS.2012.49.1.089, Bull. Korean Math. Soc. 49 (2012), 89-98. (2012) Zbl1239.32006MR2931550DOI10.4134/BKMS.2012.49.1.089
  7. Li, S., Stević, S., 10.1016/j.jmaa.2008.05.044, J. Math. Anal. Appl. 346 (2008), 262-273. (2008) Zbl1156.32002MR2428290DOI10.1016/j.jmaa.2008.05.044
  8. Li, S., Wulan, H., 10.1016/j.jmaa.2008.01.023, J. Math. Anal. Appl. 343 (2008), 58-63. (2008) Zbl1204.32006MR2409457DOI10.1016/j.jmaa.2008.01.023
  9. Mateljević, M., Vuorinen, M., On harmonic quasiconformal quasi-isometries, J. Inequal. Appl. 2010 (2010), Article ID 178732, 19 pages. (2010) Zbl1211.30040MR2665497
  10. Nowak, M., 10.1080/17476930108815339, Complex Variable Theory Appl. 44 (2001), 1-12. (2001) MR1826712DOI10.1080/17476930108815339
  11. Ren, G., Kähler, U., 10.1017/S0013091502000020, Proc. Edinb. Math. Soc., II. Ser. 48 (2005), 743-755. (2005) Zbl1148.42308MR2171195DOI10.1017/S0013091502000020
  12. Ren, G., Tu, C., 10.1090/S0002-9939-04-07617-8, Proc. Am. Math. Soc. 133 (2005), 719-726. (2005) MR2113920DOI10.1090/S0002-9939-04-07617-8
  13. Rudin, W., Function Theory in the Unit Ball of n , Grundlehren der mathematischen Wissenschaften 241 Springer, New York (1980). (1980) MR0601594
  14. Üreyen, A. E., 10.1016/j.jmaa.2015.09.030, J. Math. Anal. Appl. 434 538-553 (2016). (2016) Zbl1358.46035MR3404572DOI10.1016/j.jmaa.2015.09.030
  15. Yoneda, R., 10.1017/S001309159900142X, Proc. Edinb. Math. Soc., II. Ser. 45 (2002), 229-239. (2002) Zbl1032.46039MR1884614DOI10.1017/S001309159900142X
  16. Yoneda, R., 10.14492/hokmj/1350912980, Hokkaido Math. J. 29 (2000), 409-451. (2000) Zbl0968.46503MR1776717DOI10.14492/hokmj/1350912980
  17. Zhao, R., 10.1016/j.jmaa.2006.06.100, J. Math. Anal. Appl. 330 (2007), 291-297. (2007) Zbl1118.32006MR2302923DOI10.1016/j.jmaa.2006.06.100
  18. Zhu, K., Spaces of Holomorphic Functions in the Unit Ball, Graduate Texts in Mathematics 226 Springer, New York (2005). (2005) Zbl1067.32005MR2115155

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.