Some characterizations of harmonic Bloch and Besov spaces
Czechoslovak Mathematical Journal (2016)
- Volume: 66, Issue: 2, page 417-430
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topFu, Xi, and Lu, Bowen. "Some characterizations of harmonic Bloch and Besov spaces." Czechoslovak Mathematical Journal 66.2 (2016): 417-430. <http://eudml.org/doc/280106>.
@article{Fu2016,
abstract = {The relationship between weighted Lipschitz functions and analytic Bloch spaces has attracted much attention. In this paper, we define harmonic $\omega $-$\alpha $-Bloch space and characterize it in terms of \[ \omega ((1-|x|^2)^\beta (1-|y|^2)^\{\alpha - \beta \}) \Big | \frac\{f(x)-f(y)\}\{x-y\}\Big | \]
and \[ \omega ((1-|x|^2)^\beta (1-|y|^2)^\{\alpha - \beta \}) \Big | \frac\{f(x)-f(y)\}\{|x|y-x^\{\prime \}\}\Big | \]
where $\omega $ is a majorant. Similar results are extended to harmonic little $\omega $-$\alpha $-Bloch and Besov spaces. Our results are generalizations of the corresponding ones in G. Ren, U. Kähler (2005).},
author = {Fu, Xi, Lu, Bowen},
journal = {Czechoslovak Mathematical Journal},
keywords = {harmonic function; Bloch space; Besov space; majorant},
language = {eng},
number = {2},
pages = {417-430},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some characterizations of harmonic Bloch and Besov spaces},
url = {http://eudml.org/doc/280106},
volume = {66},
year = {2016},
}
TY - JOUR
AU - Fu, Xi
AU - Lu, Bowen
TI - Some characterizations of harmonic Bloch and Besov spaces
JO - Czechoslovak Mathematical Journal
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 66
IS - 2
SP - 417
EP - 430
AB - The relationship between weighted Lipschitz functions and analytic Bloch spaces has attracted much attention. In this paper, we define harmonic $\omega $-$\alpha $-Bloch space and characterize it in terms of \[ \omega ((1-|x|^2)^\beta (1-|y|^2)^{\alpha - \beta }) \Big | \frac{f(x)-f(y)}{x-y}\Big | \]
and \[ \omega ((1-|x|^2)^\beta (1-|y|^2)^{\alpha - \beta }) \Big | \frac{f(x)-f(y)}{|x|y-x^{\prime }}\Big | \]
where $\omega $ is a majorant. Similar results are extended to harmonic little $\omega $-$\alpha $-Bloch and Besov spaces. Our results are generalizations of the corresponding ones in G. Ren, U. Kähler (2005).
LA - eng
KW - harmonic function; Bloch space; Besov space; majorant
UR - http://eudml.org/doc/280106
ER -
References
top- Chen, S., Ponnusamy, S., Rasila, A., 10.1007/s00209-014-1361-z, Math. Z. 279 (2015), 163-183. (2015) Zbl1314.30116MR3299847DOI10.1007/s00209-014-1361-z
- Choe, B. R., Koo, H., Yi, H., 10.1006/jmaa.2000.7438, J. Math. Anal. Appl. 260 (2001), 100-123. (2001) Zbl0984.31004MR1843970DOI10.1006/jmaa.2000.7438
- Choi, E. S., Na, K., 10.1016/j.jmaa.2008.11.085, J. Math. Anal. Appl. 353 (2009), 375-385. (2009) Zbl1162.31003MR2508875DOI10.1016/j.jmaa.2008.11.085
- Dyakonov, K. M., 10.1007/BF02392692, Acta Math. 178 (1997), 143-167. (1997) Zbl0898.30040MR1459259DOI10.1007/BF02392692
- Jevtić, M., Pavlović, M., 10.2307/2161125, Proc. Amer. Math. Soc. 123 (1995), 1385-1392. (1995) Zbl0833.32002MR1264815DOI10.2307/2161125
- Li, S., 10.4134/BKMS.2012.49.1.089, Bull. Korean Math. Soc. 49 (2012), 89-98. (2012) Zbl1239.32006MR2931550DOI10.4134/BKMS.2012.49.1.089
- Li, S., Stević, S., 10.1016/j.jmaa.2008.05.044, J. Math. Anal. Appl. 346 (2008), 262-273. (2008) Zbl1156.32002MR2428290DOI10.1016/j.jmaa.2008.05.044
- Li, S., Wulan, H., 10.1016/j.jmaa.2008.01.023, J. Math. Anal. Appl. 343 (2008), 58-63. (2008) Zbl1204.32006MR2409457DOI10.1016/j.jmaa.2008.01.023
- Mateljević, M., Vuorinen, M., On harmonic quasiconformal quasi-isometries, J. Inequal. Appl. 2010 (2010), Article ID 178732, 19 pages. (2010) Zbl1211.30040MR2665497
- Nowak, M., 10.1080/17476930108815339, Complex Variable Theory Appl. 44 (2001), 1-12. (2001) MR1826712DOI10.1080/17476930108815339
- Ren, G., Kähler, U., 10.1017/S0013091502000020, Proc. Edinb. Math. Soc., II. Ser. 48 (2005), 743-755. (2005) Zbl1148.42308MR2171195DOI10.1017/S0013091502000020
- Ren, G., Tu, C., 10.1090/S0002-9939-04-07617-8, Proc. Am. Math. Soc. 133 (2005), 719-726. (2005) MR2113920DOI10.1090/S0002-9939-04-07617-8
- Rudin, W., Function Theory in the Unit Ball of , Grundlehren der mathematischen Wissenschaften 241 Springer, New York (1980). (1980) MR0601594
- Üreyen, A. E., 10.1016/j.jmaa.2015.09.030, J. Math. Anal. Appl. 434 538-553 (2016). (2016) Zbl1358.46035MR3404572DOI10.1016/j.jmaa.2015.09.030
- Yoneda, R., 10.1017/S001309159900142X, Proc. Edinb. Math. Soc., II. Ser. 45 (2002), 229-239. (2002) Zbl1032.46039MR1884614DOI10.1017/S001309159900142X
- Yoneda, R., 10.14492/hokmj/1350912980, Hokkaido Math. J. 29 (2000), 409-451. (2000) Zbl0968.46503MR1776717DOI10.14492/hokmj/1350912980
- Zhao, R., 10.1016/j.jmaa.2006.06.100, J. Math. Anal. Appl. 330 (2007), 291-297. (2007) Zbl1118.32006MR2302923DOI10.1016/j.jmaa.2006.06.100
- Zhu, K., Spaces of Holomorphic Functions in the Unit Ball, Graduate Texts in Mathematics 226 Springer, New York (2005). (2005) Zbl1067.32005MR2115155
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.