Data mining methods for prediction of air pollution
Krzysztof Siwek; Stanisław Osowski
International Journal of Applied Mathematics and Computer Science (2016)
- Volume: 26, Issue: 2, page 467-478
- ISSN: 1641-876X
Access Full Article
topAbstract
topHow to cite
topReferences
top- Agirre-Basurko, E., Ibarra-Berastegi, G. and Madriaga, I. (2006). Regression and multilayer perceptron-based models for forecast hourly O3 and nO2 levels in the Bilbao area, Environmental Modelling and Software 21(4): 430-446.
- Bhanu, B. and Lin, Y. (2003). Genetic algorithm based feature selection for target detection in SAR images, Image and Vision Computing 21(4): 591-608.
- Breiman, L. (2001). Random forests, Machine Learning 45(11): 5-32. Zbl1007.68152
- Brunelli, U., Piazza, V., Pignato, L. and Sorbello, F.and Vitabile, S. (2007). Two-day ahead prediction of daily maximum concentrations of SO2, O3, PM10, NO2, CO in urban area of Palermo, Italy, Atmospheric Environment 41(14): 2967-2995.
- Cloete, I. and Zurada, J. (2000). Knowledge-based Neurocomputing, MIT Press, Cambridge, MA.
- Goldberg, D. (2013). Genetic Algorithms in Search, Optimization, and Machine Learning, Pearson Education, Upper Saddle River, NJ.
- Grivas, G. and Chaloulakou, A. (2006). Artificial neural network models for predictions of PM10 hourly concentrations in greater area of Athens, Atmospheric Environment 40(7): 1216-1229.
- Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature selection, Journal of Machine Learning Research 3(1): 1158-1182. Zbl1102.68556
- Haykin, S. (2000). Neural Networks. A Comprehensive Foundation, 2nd Edition, Prentice-Hall, Englewood Cliffs, NJ. Zbl0828.68103
- Matlab (2014). Matlab User Manual-Statistics Toolbox, MathWorks, Natic, MA.
- Mesin, L., Taormina, R. and Pasero, E. (2010). A feature selection method for air quality forecasting, Proceedings of the International Conference on Artificial Neural Networks, Thessaloniki, Greece, pp. 489-494.
- Osowski, S., Siwek, K. and Szupiluk, R. (2009). Ensemble neural network approach for accurate load forecasting in a power system, International Journal of Applied Mathematics and Computer Science 19(2): 303-315, DOI: 10.2478/v10006-009-0026-2. Zbl1167.93338
- Perez, P. and Trier, A. (2001). Prediction of NO and NO2 concentrations near a street with heavy traffic in Santiago, Chile, Atmospheric Environment 35(21): 1783-1789.
- Scholkopf, B. and Smola, A. (2002). Learning with Kernels, MIT Press, Cambridge, MA. Zbl1019.68094
- Siwek, K., Osowski, S. and Sowiński, M. (2010). Neural predictor ensemble for accurate forecasting of PM10 pollution, Proceedings of the International Joint Conference on Neural Networks, Barcelona, Spain, pp. 1-7.
- Siwek, K., Osowski, S. and Sowiński, M. (2011). Evolving the ensemble of predictors model for forecasting the daily average PM10, International Journal of Environment and Pollution 46(3/4): 199-215.
- Sprent, P. and Smeeton, N. (2007). Applied Nonparametric Statistical Methods, Chapman and Hall/CRC, Boca Raton, FL. Zbl1141.62020
- Sumi, S.M., Zaman, M.F. and Hirose, H. (2012). A rainfall forecasting method using machine learning models and its application to the Fukuoka city case, International Journal of Applied Mathematics and Computer Science 22(4): 841-854, DOI: 10.2478/v10006-012-0062-1. Zbl1283.68305
- Tan, P.N., Steinbach, M. and Kumar, V. (2006). Introduction to Data Mining, Pearson Education, Boston, MA.
- Vafaie, H. and De Jong, K. (1992). Genetic algorithms as a tool for feature selection in machine learning, Proceedings of the 4th International Conference on Tools with Artificial Intelligence, Arlington, VA, USA, pp. 1-6.
- Zhang, T. (2009). Adaptive forward-backward greedy algorithm for sparse learning with linear models, in D. Koller et al. (Eds.), NIPS: Proceedings of Neural Information Processing Systems, MIT Press, Cambridge, MA, pp. 1921-1928.