Reduced-order fractional descriptor observers for a class of fractional descriptor continuous-time nonlinear systems
International Journal of Applied Mathematics and Computer Science (2016)
- Volume: 26, Issue: 2, page 277-283
- ISSN: 1641-876X
Access Full Article
topAbstract
topHow to cite
topTadeusz Kaczorek. "Reduced-order fractional descriptor observers for a class of fractional descriptor continuous-time nonlinear systems." International Journal of Applied Mathematics and Computer Science 26.2 (2016): 277-283. <http://eudml.org/doc/280112>.
@article{TadeuszKaczorek2016,
abstract = {Fractional descriptor reduced-order nonlinear observers for a class of fractional descriptor continuous-time nonlinear systems are proposed. Sufficient conditions for the existence of the observers are established. The design procedure for the observers is given and demonstrated on a numerical example.},
author = {Tadeusz Kaczorek},
journal = {International Journal of Applied Mathematics and Computer Science},
keywords = {fractional system; descriptor system; nonlinear systems; reduced-order observer},
language = {eng},
number = {2},
pages = {277-283},
title = {Reduced-order fractional descriptor observers for a class of fractional descriptor continuous-time nonlinear systems},
url = {http://eudml.org/doc/280112},
volume = {26},
year = {2016},
}
TY - JOUR
AU - Tadeusz Kaczorek
TI - Reduced-order fractional descriptor observers for a class of fractional descriptor continuous-time nonlinear systems
JO - International Journal of Applied Mathematics and Computer Science
PY - 2016
VL - 26
IS - 2
SP - 277
EP - 283
AB - Fractional descriptor reduced-order nonlinear observers for a class of fractional descriptor continuous-time nonlinear systems are proposed. Sufficient conditions for the existence of the observers are established. The design procedure for the observers is given and demonstrated on a numerical example.
LA - eng
KW - fractional system; descriptor system; nonlinear systems; reduced-order observer
UR - http://eudml.org/doc/280112
ER -
References
top- Cuihong, W. (2012). New delay-dependent stability criteria for descriptor systems with interval time delay, Asian Journal of Control 14(1): 197-206. Zbl1282.93228
- Dai, L. (1989). Singular Control Systems, Lecture Notes in Control and Information Sciences, Vol. 118, Springer-Verlag, Berlin. Zbl0669.93034
- Fahmy, M.M. and O'Reill, J. (1989). Matrix pencil of closed-loop descriptor systems: Infinite-eigenvalue assignment, International Journal of Control 49(4): 1421-1431. Zbl0681.93036
- Gantmacher, F.R. (1960). The Theory of Matrices, Chelsea Publishing Co., New York, NY. Zbl0088.25103
- Guang-ren, D. (2010). Analysis and Design of Descriptor Linear Systems, Springer, New York, NY. Zbl1227.93001
- Kaczorek, T. (1992). Linear Control Systems, Vol. 1, Research Studies Press, J. Wiley, New York, NY. Zbl0784.93002
- Kaczorek, T. (2004). Infinite eigenvalue assignment by an output feedback for singular systems, International Journal of Applied Mathematics and Computer Science 14(1): 19-23. Zbl1171.93331
- Kaczorek, T. (2008). Fractional positive continuous-time linear systems and their reachability, International Journal of Applied Mathematics and Computer Science 18(2): 223-228, DOI: 10.2478/v10006-008-0020-0. Zbl1235.34019
- Dodig, M. and Stosic, M. (2009). Singular systems state feedbacks problems, Linear Algebra and Its Applications 431(8): 1267-1292. Zbl1170.93016
- Kaczorek, T. (2001). Full-order perfect observers for continuous-time linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 49(4). Zbl1007.93008
- Kaczorek, T. (2011a). Positive linear systems consisting of n subsystems with different fractional orders, IEEE Transactions on Circuits and Systems 58(7): 1203-1210.
- Kaczorek, T. (2011b). Selected Problems of Fractional Systems Theory, Springer-Verlag, Berlin. Zbl1221.93002
- Kaczorek, T. (2012a). Checking of the positivity of descriptor linear systems with singular pencils, Archive of Control Sciences 22(1): 77-86. Zbl1270.93057
- Kaczorek, T. (2012b). Positive fractional continuous-time linear systems with singular pencils, Bulletin of the Polish Academy of Sciences: Technical Sciences 60(1): 9-12.
- Kaczorek, T. (2013). Descriptor fractional linear systems with regular pencils, Asian Journal of Control 15(4): 1051-1064. Zbl1286.93086
- Kaczorek, T. (2014a). Fractional descriptor observers for fractional descriptor continuous-time linear system, Archives of Control Sciences 24(1): 5-15. Zbl1301.93031
- Kaczorek, T. (2014b). Reduced-order fractional descriptor observers for fractional descriptor continuous-time linear systems, Bulletin of the Polish Academy of Sciences: Technical Sciences 62(4): 889-895. Zbl1301.93031
- Kaczorek, T. (2015). Prefect observers of fractional descriptor continuous-time linear systems, in K.J. Latawiec et al. (Eds.), Advances in Modeling and Control of Non-integer orders Systems, Lecture Notes in Electrical Engineering, Vol. 320, Springer, Berlin/Heidelberg, pp. 5-12.
- Kociszewski, R. (2013). Observer synthesis for linear discrete-time systems with different fractional orders, Pomiary Automatyka Robotyka (2): 376-381, (on CD-ROM).
- Kucera, V. and Zagalak, P. (1988). Fundamental theorem of state feedback for singular systems, Automatica 24(5): 653-658. Zbl0661.93033
- Lewis, F.L. (1983). Descriptor systems, expanded descriptor equation and Markov parameters, IEEE Transactions on Automatic Control AC-28(5): 623-627. Zbl0517.93005
- Luenberger, D.G. (1977). Dynamical equations in descriptor form, IEEE Transactions on Automatic Control AC-22(3): 312-321. Zbl0354.93007
- Luenberger, D.G. (1978). Time-invariant descriptor systems, Automatica 14(5): 473-480. Zbl0398.93040
- Matignon, D. (1996). Stability result on fractional differential equations with applications to control processing, IMACSSMC Proceedings, Lille, France, pp. 963-968.
- N'Doye I., Darouach M., Voos H. and Zasadzinski M. (2013). Design of unknown input fractional-order observers for fractional-order systems, International Journal of Applied Mathematics and Computer Science 23(3): 491-500, DOI: 10.2478/amcs-2013-0037. Zbl1279.93027
- Oldham, K.B. and Spanier, J. (1974). The Fractional Calculus, Academic Press, New York, NY. Zbl0292.26011
- Ostalczyk, P. (2008). Epitome of the Fractional Calculus: Theory and Its Applications in Automatics, Technical University of Łódź Press, Łódź, (in Polish).
- Podlubny, I. (1999). Fractional Differential Equations, Academic Press, New York, NY. Zbl0924.34008
- Van Dooren, P. (1979). The computation of Kronecker's canonical form of a singular pencil, Linear Algebra and Its Applications 27: 103-140. Zbl0416.65026
- Vinagre, B.M., Monje, C.A. and Calderon, A.J. (2002). Fractional order systems and fractional order control actions, Lecture 3, IEEE CDC'02, Las Vegas, NV, USA.
- Virnik, E. (2008). Stability analysis of positive descriptor systems, Linear Algebra and Its Applications 429: 2640-2659. Zbl1147.93033
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.