Certain contact metrics satisfying the Miao-Tam critical condition
Dhriti Sundar Patra; Amalendu Ghosh
Annales Polonici Mathematici (2016)
- Volume: 116, Issue: 3, page 263-271
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topDhriti Sundar Patra, and Amalendu Ghosh. "Certain contact metrics satisfying the Miao-Tam critical condition." Annales Polonici Mathematici 116.3 (2016): 263-271. <http://eudml.org/doc/280263>.
@article{DhritiSundarPatra2016,
abstract = {We study certain contact metrics satisfying the Miao-Tam critical condition. First, we prove that a complete K-contact metric satisfying the Miao-Tam critical condition is isometric to the unit sphere $S^\{2n+1\}$. Next, we study (κ,μ)-contact metrics satisfying the Miao-Tam critical condition.},
author = {Dhriti Sundar Patra, Amalendu Ghosh},
journal = {Annales Polonici Mathematici},
keywords = {contact metric manifolds; Miao-Tam critical condition; K-contact metric; ($\kappa $; $\mu $)-contact metric},
language = {eng},
number = {3},
pages = {263-271},
title = {Certain contact metrics satisfying the Miao-Tam critical condition},
url = {http://eudml.org/doc/280263},
volume = {116},
year = {2016},
}
TY - JOUR
AU - Dhriti Sundar Patra
AU - Amalendu Ghosh
TI - Certain contact metrics satisfying the Miao-Tam critical condition
JO - Annales Polonici Mathematici
PY - 2016
VL - 116
IS - 3
SP - 263
EP - 271
AB - We study certain contact metrics satisfying the Miao-Tam critical condition. First, we prove that a complete K-contact metric satisfying the Miao-Tam critical condition is isometric to the unit sphere $S^{2n+1}$. Next, we study (κ,μ)-contact metrics satisfying the Miao-Tam critical condition.
LA - eng
KW - contact metric manifolds; Miao-Tam critical condition; K-contact metric; ($\kappa $; $\mu $)-contact metric
UR - http://eudml.org/doc/280263
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.